At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from the adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor l-NAME prevented isoproterenol from increasing either NO production or de novo transcription. l-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors.
The maturation and folding of G protein-coupled receptors are governed by mechanisms that remain poorly understood. In an effort to characterize these biological events, we optimized a novel, gel-free proteomic approach to identify partners of the β2-adrenergic receptor (β2AR). In addition to a number of known interacting proteins such as heterotrimeric G protein subunits, this allowed us to identify proteins involved in endoplasmic reticulum (ER) QC of the receptor. Among β2AR-associated proteins is Ring finger protein 5 (RNF5), an E3 ubiquitin ligase anchored to the outer membrane of the ER. Coimmunoprecipitation assays confirmed, in a cellular context, the interaction between RNF5 and the β2AR as well as the prostaglandin D2 receptor (DP). Confocal microscopy revealed that DP colocalized with RNF5 at the ER. Coexpression of RNF5 with either receptor increased levels of their expression, whereas small interfering RNA-mediated knockdown of endogenous RNF5 promoted the opposite. RNF5 did not modulate the ubiquitination state of β2AR or DP. Instead, RNF5 ubiquitinated JNK-associated membrane protein (JAMP), a protein that recruits the proteasome to the ER membrane and that is negatively regulated by RNF5-mediated ubiquitination. JAMP coimmunoprecipitated with both β2AR and DP and decreased total receptor protein levels through proteasomal degradation. Expression of DP, a receptor largely retained in the ER, promoted proteasome recruitment by JAMP. Degradation of both receptors via JAMP was increased when RNF5 was depleted. Our data suggest that RNF5 regulates the turnover of specific G protein-coupled receptors by ubiquitinating JAMP and preventing proteasome recruitment.
We examined the association of gene expression with noncancer chronic disease outcomes in Mayak nuclear weapons plant workers who were exposed to radiation due to their occupation. We conducted a cross-sectional study with selection based on radiation exposure status of Mayak plant workers living in Ozyorsk who were alive in 2011 and either exposed to: combined incorporated Plutonium-239 ((239)Pu) and external gamma-ray exposure (n = 82); external gamma-ray exposure alone (n = 18); or were unexposed (n = 50) of Ozyorsk residents who provided community-based professional support for plant personnel and who were alive in 2011. Peripheral blood was taken and RNA was isolated and then converted into cDNA and stored at -20°C. In a previous analysis we screened the whole genome for radiation-associated candidate genes, and validated 15 mRNAs and 15 microRNAs using qRT-PCR. In the current analysis we examined the association of these genes with 15 different chronic diseases on 92 samples (47 males, 45 females). We examined the radiation-to-gene and gene-to-disease associations in statistical models stratified by gender and separately for each disease and exposure. We modeled radiation exposure as gamma or (239)Pu on both the continuous and categorical scales. Unconditional logistic regression was used to calculate odds ratios (OR), 95% confidence intervals (CI), and the concordance for genes that were significantly associated with radiation exposure and a specific disease outcome were identified. Altogether 12 mRNAs and 9 microRNAs appeared to be significantly associated with 6 diseases, including thyroid diseases (3 genes, OR: 1.2-5.1, concordance: 71-78%), atherosclerotic diseases (4 genes, OR: 2.5-10, concordance: 70-75%), kidney diseases (6 genes, OR: 1.3-8.6, concordance: 69-85%), cholelithiasis (3 genes, OR: 0.2-0.3, concordance: 74-75%), benign tumors [1 gene (AGAP4), OR: 3.7, concordance: 81%] and chronic radiation syndrome (4 genes, OR: 2.5-4.3, concordance: 70-99%). Further associations were found for systolic blood pressure (6 genes, OR: 3.7-10.6, concordance: 81-88%) and body mass index [1 gene (miR-484), OR: 3.7, concordance: 81%]. All associations were gender and exposure dependent. These findings suggest that gene expression changes observed after occupational prolonged radiation exposures may increase the risk for certain noncancer chronic diseases.
The authors evaluated gene expression in the peripheral blood in relation to occupational exposure in Mayak workers to find out about the existence of a permanent post exposure signature. Workers were exposed to combined incorporated ²³⁹Pu and external gamma rays (n = 82) or to external gamma rays only (n = 18), and 50 unexposed individuals served as controls. Peripheral blood was taken from workers older than 70 y. RNA was isolated, converted into cDNA, and stored at -20°C. A two-stage study design was performed focusing on examinations on the transcriptional (mRNA) and post-transcriptional level (microRNA). In the first stage, 40 samples were identified for screening purposes and selection of candidate genes. For examinations on the transcriptional level, whole genome microarrays and qRT-PCR were employed on the post-transcriptional level (667 microRNAs). Candidate genes were assessed by (1) introducing a twofold difference in gene expression over the reference group and (2) showing a significant p-value using the Kruskal-Wallis test. From 42,545 transcripts of the whole genome microarray, 376 candidate genes (80 up-regulated and 296 down-regulated relative to the reference group) were selected. Expression of almost all of these genes (70-98%) appeared significantly associated with internal ²³⁹Pu and to a lesser extent were associated with external gamma-ray exposure (2-30%). Associations in the same direction were found for 45 microRNAs. Although both exposures led to modulations of different gene sets in different directions, the authors could detect no differences in gene set enrichment analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.