Short-term load forecasting (STLF) is fundamental for the proper operation of power systems, as it finds its use in various basic processes. Therefore, advanced calculation techniques are needed to obtain accurate results of the consumption prediction, taking into account the numerous exogenous factors that influence the results’ precision. The purpose of this study is to integrate, additionally to the conventional factors (weather, holidays, etc.), the current aspects regarding the global COVID-19 pandemic in solving the STLF problem, using a convolutional neural network (CNN)-based model. To evaluate and validate the impact of the new variables considered in the model, the simulations are conducted using publicly available data from the Romanian power system. A comparison study is further carried out to assess the performance of the proposed model, using the multiple linear regression method and load forecasting results provided by the Romanian Transmission System Operator (TSO). In this regard, the Mean Squared Error (MSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), and the Root Mean Square Error (RMSE) are used as evaluation indexes. The proposed methodology shows great potential, as the results reveal better error values compared to the TSO results, despite the limited historical data.
The optimal reactive power dispatch (ORPD) problem represents a fundamental concern in the efficient and reliable operation of power systems, based on the proper coordination of numerous devices. Therefore, the ORPD calculation is an elaborate nonlinear optimization problem that requires highly performing computational algorithms to identify the optimal solution. In this paper, the potential of metaheuristic methods is explored for solving complex optimization problems specific to power systems. In this regard, an improved salp swarm algorithm is proposed to solve the ORPD problem for the IEEE-14 and IEEE-30 bus systems, by approaching the reactive power planning as both a single- and a multi- objective problem and aiming at minimizing the real power losses and the bus voltage deviations. Multiple comparison studies are conducted based on the obtained results to assess the proposed approach performance with respect to other state-of-the-art techniques. In all cases, the results demonstrate the potential of the developed method and reflect its effectiveness in solving challenging problems.
In this paper, a novel Mutation-Improved Grey Wolf Optimizer (MIGWO) model is introduced in order to solve the optimal scheduling problem for battery energy storage systems (BESS), considering the mass integration of renewable energy sources (RES), such as solar and wind generation, in active distribution networks. In this regard, four improvements are applied to the conventional GWO algorithm to modify the exploration-exploitation balance for an enhanced convergence rate. The validity and performance of the proposed model are tested on 23 classical benchmark functions and compared to the original algorithm. The new technologies present in active distribution networks lead to increased complexity in the efficient coordination of existing resources, making it necessary to resort to advanced optimization and calculation methods. As operational planning and control functions in power systems are computationally demanding and require multiple power flow calculations, the necessity of simultaneous (parallel) computing techniques emerged. In order to reduce the computing time, an accelerated GPU parallel computing technique is also applied in the proposed model. The MIGWO algorithm is further applied on the modified IEEE-33 bus system aiming to minimize the total power losses, based on the optimal coordination of BESS operation scheduling and RES generation for multiple load demand and local generation scenarios, as well as for various initial state-of-charge values of BESS.INDEX TERMS Active distribution network, battery energy storage system, grey wolf optimization, parallel computing.
NOMENCLATURE ABBREVIATIONS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.