BackgroundDevelopment and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy (ACT) constitutes a major threat to recent global malaria control achievements. Surveillance of molecular markers could act as an early warning system of ACT-resistance before clinical treatment failures are apparent. The aim of this study was to analyse temporal trends of established genotypes associated with artemether-lumefantrine tolerance/resistance before and after its deployment as first-line treatment for uncomplicated malaria in Tanzania 2006.MethodsSingle nucleotide polymorphisms in the P. falciparum multidrug resistance gene 1 (pfmdr1) N86Y, Y184F, D1246Y and P. falciparum chloroquine transporter gene (pfcrt) K76T were analysed from dried blood spots collected during six consecutive studies from children with uncomplicated P. falciparum malaria in Fukayosi village, Bagamoyo District, Tanzania, between 2004–2011.ResultsThere was a statistically significant yearly increase of pfmdr1 N86, 184F, D1246 and pfcrt K76 between 2006–2011 from 14% to 61% (yearly OR = 1.38 [95% CI 1.25-1.52] p < 0.0001), 14% to 35% (OR = 1.17 [95% CI 1.07-1.30] p = 0.001), 54% to 85% (OR = 1.21 [95% CI 1.03-1.42] p = 0.016) and 49% to 85% (OR = 1.33 [95% CI 1.17-1.51] p < 0.0001), respectively. Unlike for the pfmdr1 SNP, a significant increase of pfcrt K76 was observed already between 2004–2006, from 26% to 49% (OR = 1.68 [95% CI 1.17-2.40] p = 0.005). From 2006 to 2011 the pfmdr1 NFD haplotype increased from 10% to 37% (OR = 1.25 [95% CI 1.12-1.39] p < 0.0001), whereas the YYY haplotype decreased from 31% to 6% (OR = 0.73 [95% CI 0.56-0.98] p = 0.018). All 390 successfully analysed samples had one copy of the pfmdr1 gene.ConclusionThe temporal selection of molecular markers associated with artemether-lumefantrine tolerance/resistance may represent an early warning sign of impaired future drug efficacy. This calls for stringent surveillance of artemether-lumefantrine efficacy in Tanzania and emphasizes the importance of molecular surveillance as a complement to standard in vivo trials.
BackgroundThis study assessed the safety of the new World Health Organization (WHO) recommendation of adding a single low-dose of primaquine (PQ) to standard artemisinin-based combination therapy (ACT), regardless of individual glucose-6-phosphate dehydrogenase (G6PD) status, for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania.MethodsMen and non-pregnant, non-lactating women aged ≥1 year with uncomplicated P. falciparum malaria were enrolled and randomized to either standard artemether-lumefantrine (AL) regimen alone or with a 0.25 mg/kg single-dose of PQ. PQ was administered concomitantly with the first AL dose. All drug doses were supervised. Safety was evaluated between days 0 and 28. G6PD status was assessed using rapid test (CareStart™) and molecular genotyping. The primary endpoint was mean percentage relative reduction in haemoglobin (Hb) concentration (g/dL) between days 0 and 7 by genotypic G6PD status and treatment arm.ResultsOverall, 220 patients, 110 per treatment arm, were enrolled, of whom 33/217 (15.2 %) were phenotypically G6PD deficient, whereas 15/110 (13.6 %) were genotypically hemizygous males, 5/110 (4.5 %) homozygous females and 22/110 (20 %) heterozygous females. Compared to genotypically G6PD wild-type/normal [6.8, 95 % confidence interval (CI) 4.67–8.96], only heterozygous patients in AL arm had significant reduction in day-7 mean relative Hb concentration (14.3, 95 % CI 7.02-21.55, p=0.045), however, none fulfilled the pre-defined haemolytic threshold value of ≥25 % Hb reduction. After adjustment for baseline parasitaemia, Hb, age and sex the mean relative Hb reduction was not statistically significant in both heterozygous and hemizygous/homozygous patients in both arms. A majority of the adverse events (AEs) were mild and unrelated to the study drugs. However, six (4.4 %) episodes, three per treatment arm, of acute haemolytic anaemia occurred between days 0 and 7. Three occurred in phenotypically G6PD deficient patients, two in AL and one in AL + PQ arm, but none in genotypically hemizygous/homozygous patients. All patients with acute haemolytic anaemia recovered without medical intervention.ConclusionThe findings support that the WHO recommendation of adding a single low-dose of PQ to standard AL regimen is safe for the treatment of acute uncomplicated P. falciparum malaria regardless of G6PD status in Tanzania.Trial registration number NCT02090036Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1341-3) contains supplementary material, which is available to authorized users.
BackgroundIn Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras.MethodsBlood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods.ResultsThirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples.ConclusionThe results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.