Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface of Escherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membrane fractions was verified by immunoblotting with OmpA antisera. Inclusion of the organophosphorus hydrolase signal sequence was necessary for achieving enzymatic activity on the surface. More than 80% of the OPH activity was located on the cell surface as determined by protease accessibility experiments. Whole cells expressing OPH on the cell surface degraded parathion and paraoxon very effectively without any diffusional limitation, resulting in sevenfold higher rates of parathion degradation compared with whole cells with similar levels of intracellular OPH. Immobilization of these live biocatalysts onto solid supports could provide an attractive means for pesticide detoxification in place of immobilized enzymes, affording a reduced diffusional barrier.
A potentiometric microbial biosensor for the direct measurement of organophosphate (OP) nerve agents was developed by modifying a pH electrode with an immobilized layer of Escherichia coli cells expressing organophosphorus hydrolase (OPH) on the cell surface. OPH catalyzes the hydrolysis of organophosporus pesticides to release protons, the concentration of which is proportional to the amount of hydrolyzed substrate. The sensor signal and response time were optimized with respect to the buffer pH, ionic concentration of buffer, temperature, and weight of cells immobilized using paraoxon as substrate. The best sensitivity and response time were obtained using a sensor constructed with 2.5 mg of cells and operating in pH 8.5, 1 mM HEPES buffer. Using these conditions, the biosensor was used to measure as low as 2 microM of paraoxon, methyl parathion, and diazinon. The biosensor had very good storage and multiple use stability. The use of cells with the metabolic enzyme expressed on cell surface as a biological transducer provides advantages of no resistances to mass transport of the analyte and product across the cell membrane and low cost due to elimination of enzyme purification, over the conventional microbial biosensors based on cells expressing enzyme intracellularly and enzyme-based sensors, respectively.
A fiber-optic microbial biosensor suitable for direct measurement of organophosphate nerve agents was developed. The unique features of this novel microbial biosensor were the recombinant Escherichia coli cells expressing the enzyme organophosphorus hydrolase on the cell surface and the optical detection of the products of enzyme-catalyzed organophosphate hydrolysis. The use of cells with the metabolic enzyme expressed on the cell surface as a biological sensing element provides advantages of no resistance to mass transport of the analyte and product across the cell membrane and low cost due to elimination of enzyme purification, over the conventional microbial biosensors based on cells expressing enzyme intracellularly and enzyme-based sensors, respectively. The use of an optical transducer allows the detection of different organophosphates in a mixture, presently not feasible with acetylcholinesterase-based biosensors. E. coli cells expressing organophosphorus hydrolase (OPH) on the cell surface were immobilized in low melting temperature agarose on a nylon membrane and attached to the common end of a bifurcated fiber-optic bundle. OPH-expressing E. coli cells catalyzed the hydrolysis of organophosphorus pesticides to form stoichiometric amounts of chromophoric products that absorb light at specific wavelengths. The backscattered radiation of the specific wavelength incident light was measured using a photomultiplier detector and correlated to the organophosphate concentration. The best sensitivity and response time were obtained using a sensor constructed with 1.5 mg of cells operating in pH 9, 50 mM HEPES buffer with 100 mM NaCl and 0.05 mM CoCl2 at 30 degrees C. At optimized conditions, the biosensor measured paraoxon, parathion, and coumaphos pesticides with high selectivity against triazine and carbamate pesticides in approximately 10 min. The lower detection limits were 3 microM for paraoxon and parathion and 5 microM for coumaphos. When stored in the buffer at 22 degrees C, the biosensor was stable for over a 1-month period and showed no decline in the response for over 75 repeated usages. The new fiber-optic microbial biosensor is an ideal tool for on-line monitoring of the detoxification process for organophosphate pesticides-contaminated wastewaters but may not be suitable for environmental monitoring.
An easy to construct and inexpensive potentiometric microbial biosensor for the direct measurement of organophosphate (OP) nerve agents was developed. The biological sensing element of this biosensor was recombinant Escherichia coli cells containing the plasmid pJK33 that expressed organophosphorus hydrolase (OPH) intracellularly. The cells were immobilized by entrapment behind a microporus polycarbonate membrane on the top of the hydrogen ion sensing glass membrane pH electrode. OPH catalyzes the hydrolysis of organophosphorus pesticides to release protons, the concentration of which is proportional to the amount of hydrolyzed substrate. The sensor signal and response time were optimized with respect to the buffer pH, ionic concentration of buffer and temperature, using paraoxon as substrate. The best sensitivity and response time were obtained using a sensor operating in pH 8.5, 1 mM HEPES buffer and 37 ЊC. The biosensor was applied for measurement of paraoxon, ethyl parathion, methyl parathion and diazinon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.