Shh signaling is not required for initiating hair follicle development. Shh signaling is essential, however, for controlling ingrowth and morphogenesis of the hair follicle.
Specification of cell lineages in mammals begins shortly after fertilization with formation of a blastocyst consisting of trophectoderm, which contributes exclusively to the placenta, and inner cell mass (ICM), from which the embryo develops. Here we report that ablation of the mouse Tead4 gene results in a preimplantation lethal phenotype, and TEAD4 is one of two highly homologous TEAD transcription factors that are expressed during zygotic gene activation in mouse 2-cell embryos. Tead4 -/-embryos do not express trophectoderm-specific genes, such as Cdx2, but do express ICM-specific genes, such as Oct4 (also known as Pou5f1). Consequently, Tead4-/-morulae do not produce trophoblast stem cells, trophectoderm or blastocoel cavities, and therefore do not implant into the uterine endometrium. However, Tead4 -/-embryos can produce embryonic stem cells, a derivative of ICM, and if the Tead4 allele is not disrupted until after implantation, then Tead4 -/-embryos complete development. Thus, Tead4 is the earliest gene shown to be uniquely required for specification of the trophectoderm lineage.
NRG1 and ERBB4 have emerged as some of the most reproducible schizophrenia risk genes. Moreover, the Neuregulin (NRG)/ErbB4 signaling pathway has been implicated in dendritic spine morphogenesis, glutamatergic synaptic plasticity, and neural network control. However, despite much attention this pathway and its effects on pyramidal cells have received recently, the presence of ErbB4 in these cells is still controversial. As knowledge of the precise locus of receptor expression is crucial to delineating the mechanisms by which NRG signaling elicits its diverse physiological effects, we have undertaken a thorough analysis of ErbB4 distribution in the CA1 area of the rodent hippocampus using newly generated rabbit monoclonal antibodies and ErbB4-mutant mice as negative controls. We detected ErbB4 immunoreactivity in GABAergic interneurons but not in pyramidal neurons, a finding that was further corroborated by the lack of ErbB4 mRNA in electrophysiologically identified pyramidal neurons as determined by single-cell reverse transcription-PCR. Contrary to some previous reports, we also did not detect processed ErbB4 fragments or nuclear ErbB4 immunoreactivity. Ultrastructural analysis in CA1 interneurons using immunoelectron microscopy revealed abundant ErbB4 expression in the somatodendritic compartment in which it accumulates at, and adjacent to, glutamatergic postsynaptic sites. In contrast, we found no evidence for presynaptic expression in cultured GAD67-positive hippocampal interneurons and in CA1 basket cell terminals. Our findings identify ErbB4-expressing interneurons, but not pyramidal neurons, as a primary target of NRG signaling in the hippocampus and, furthermore, implicate ErbB4 as a selective marker for glutamatergic synapses on inhibitory interneurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.