We probe the local detection efficiency in a nanowire superconducting single-photon detector along the cross-section of the wire with a spatial resolution of 10 nm. We experimentally find a strong variation in the local detection efficiency of the device. We demonstrate that this effect explains previously observed variations in NbN detector efficiency as function of device geometry.Nanowire superconducting single-photon detectors (SSPDs) consist of a superconducting wire of nanoscale cross-section [1], typically 4 nm by 100 nm. Photon detection occurs when a single quantum of light is absorbed and triggers a transition from the superconducting to the normal state. SSPDs have high efficiency, low jitter, low dark count rate and fast reset time [2], and are therefore a key technology for, among others, quantum key distribution Although progress has been made recently, the underlying physical mechanism responsible for photon detection on the nanoscale is still under active investigation. A combination of theory [6,7], experiments [8][9][10] and simulations [11,12] on NbN SSPDs indicates that the absorption of a photon destroys Cooper pairs in the superconductor and creates a localized cloud of quasiparticles that diverts current across the wire. This makes the wire susceptible to the entry of a superconducting vortex from the edge of the wire. Energy dissipation by this moving vortex drives the system to the normal state.An important and unexpected implication of this detection model is a nanoscale position variation in the photodetection properties of the device. The conditions at the entry point of the vortex determine the energy required for it to cross the wire. This causes photons absorbed close to the edge to have a local detection efficiency (LDE) [13] compared to photons absorbed in the center of the wire [12]. This effect has practical implications for the operation of SSPDs, since it represents a potential limitation of the detection efficiency. In addition, SSPDs have been proposed for nanoscale sensing, either in a near-field optical microscope configuration [14] or as a subwavelength multiphoton probe [15], where this effect would be of major importance for the properties of such a microscope. While this effect has been predicted theoretically, clear experimental evidence is missing. * renema@physics.leidenuniv.nlIn this work, we experimentally explore the nanoscale variations in the intrinsic response of the detector. We spatially resolve the LDE with a resolution of approximately 10 nm, better than λ/50, using far-field illumination only. We find that our results are qualitatively consistent with numerical simulations [11,12]. Our results provide excellent quantitative agreement with experiments that indicate a polarization dependence in the LDE that was hitherto not understood [16].The key technique used in this work is a differential polarization measurement that probes the IDE of the detector (see Figure 1). The technique is based on the fact that polarized light is absorbed preferentially in dif...
We experimentally investigate the effect of a magnetic field on photon detection in superconducting single-photon detectors. At low fields, the effect of a magnetic field is through the direct modification of the quasiparticle density of states of the superconductor, and magnetic field and bias current are interchangable, as is expected for homogeneous dirty-limit superconductors. At the field where a first vortex enters the detector, the effect of the magnetic field is reduced, up until the point where the critical current of the detector starts to be determined by flux flow. From this field on, increasing the magnetic field does not alter the detection of photons anymore, whereas it does still change the rate of dark counts. This result points at an intrinsic difference in dark and light counts, and also shows that no enhancement of the intrinsic detection efficiency of a straight SSPD wire is achievable in a magnetic field.
Currently, the nonlinear optical properties of 2D materials are attracting the attention of an ever-increasing number of research groups due to their large potential for applications in a broad range of scientific disciplines. Here, we investigate the interplay between nonlinear photoluminescence (PL) and several degenerate and nondegenerate nonlinear optical processes of a WS 2 monolayer at room temperature. We illuminate the sample using two femtosecond laser pulses at frequencies ω 1 and ω 2 with photon energies below the optical bandgap. As a result, the sample emits light that shows characteristic spectral peaks of the second-harmonic generation, sum-frequency generation, and four-wave mixing. In addition, we find that both resonant and off-resonant nonlinear excitation via frequency mixing contributes to the (nonlinear) PL emission at the A-exciton frequency. The PL exhibits a clear correlation with the observed nonlinear effects, which we attribute to the generation of excitons via degenerate and nondegenerate multiphoton absorption. Our work illustrates a further step toward understanding the fundamental relation between parametric and nonparametric nondegenerate optical mechanisms in transition-metal dichalcogenides. In turn, such understanding has great potential to expand the range of applicability of nonlinear optical processes of 2D materials in different fields of science and technology, where nonlinear mechanisms are typically limited to degenerate processes.
Valley pseudospin has emerged as a good quantum number to encode information, analogous to spin in spintronics. Two-dimensional transition metal dichalcogenides (2D TMDCs) recently attracted enormous attention for their easy access to the valley pseudospin through valley-dependent optical transitions. Different ways have been reported to read out the valley pseudospin state. For practical applications, on-chip access to and manipulation of valley pseudospins is paramount, not only to read out but especially to initiate the valley pseudospin state. Here, we experimentally demonstrate the selective on-chip, optical near-field initiation of valley pseudospins at room temperature. We exploit a nanowire optical waveguide, such that the local transverse optical spin of its guided modes selectively excites a specific valley pseudospin. Furthermore, spin-momentum locking of the transverse optical spin enables us to flip valley pseudospins with the opposite propagation direction. Thus, we open up ways to realize integrated hybrid opto-valleytronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.