Polyketide synthases construct polyketides with diverse structures and biological activities via the condensation of extender units and acyl thioesters. Although a growing body of evidence suggests that polyketide synthases might be tolerant to non-natural extender units, in vitro and in vivo studies aimed at probing and utilizing polyketide synthase specificity are severely limited to only a small number of extender units, owing to the lack of synthetic routes to a broad variety of acyl-CoA extender units. Here, we report the construction of promiscuous malonyl-CoA synthetase variants that can be used to synthesize a broad range of malonyl-CoA extender units substituted at the C2-position, several of which contain handles for chemoselective ligation and are not found in natural biosynthetic systems. We highlighted utility of these enzymes by probing the acyl-CoA specificity of several trans-acyltransferases, leading to the unprecedented discovery of poly specificity toward non-natural extender units, several of which are not found in naturally occurring biosynthetic pathways. These results reveal that polyketide biosynthetic machinery might be more tolerant to non-natural substrates than previously established, and that mutant synthetases are valuable tools for probing the specificity of biosynthetic machinery. Our data suggest new synthetic biology strategies for harnessing this promiscuity and enabling the regioselective modification of polyketides.
Combinatorial biosynthesis approaches that involve modular type I polyketide synthases (PKSs) are proven strategies for the synthesis of polyketides. In general however, such strategies are usually limited in scope and utility due to the restricted substrate specificity of polyketide biosynthetic machinery. Herein, a panel of chemo-enzymatically synthesized acyl-CoA's was used to probe the promiscuity of a polyketide synthase. Promiscuity determinants were dissected, revealing that the KS is remarkably tolerant to a diverse array of extender units, while the AT likely discriminates between extender units that are native to the producing organism. Our data provides a clear blueprint for future enzyme engineering efforts, and sets the stage for harnessing extender unit promiscuity by employing various in vivo polyketide diversification strategies.
Acyltransferase (AT) domains of polyketide synthases (PKSs) select extender units for incorporation into polyketides and dictate large portions of the structures of clinically relevant natural products. Accordingly, there is significant interest in engineering the substrate specificity of PKS ATs in order to site-selectively manipulate polyketide structure. However, previous attempts to engineer ATs have yielded mutant PKSs with relaxed extender unit specificity, rather than an inversion of selectivity from one substrate to another. Here, by directly screening the extender unit selectivity of mutants from active site saturation libraries of an AT from the prototypical PKS, 6-deoxyerythronolide B synthase, a set of single amino acid substitutions was discovered that dramatically impact the selectivity of the PKS with only modest reductions of product yields. One particular substitution (Tyr189Arg) inverted the selectivity of the wild-type PKS from its natural substrate towards a non-natural alkynyl-modified extender unit while maintaining more than twice the activity of the wild-type PKS with its natural substrate. The strategy and mutations described herein form a platform for combinatorial biosynthesis of site-selectively modified polyketide analogues that are modified with non-natural and non-native chemical functionality.
Tailoring guide: We have used structure-guided saturation mutagenesis followed by colorimetric screening to identify mutant malonyl-CoA synthetases with altered substrate specificity. One particular mutant displayed a 240-fold shift in specificity (see graphic). These mutant enzymes will be useful tools for providing extender units to probe the activity of polyketide synthases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.