The paper aims to present application of Educational Data Mining and particularly Case-Based Reasoning (CBR) for students profiling and further to design a personalised intelligent learning system. The main aim here is to develop a recommender system which should help the learners to create learning units (scenarios) that are the most suitable for them. First of all, systematic literature review on application of CBR and its possible implementation to personalise learning was performed in the paper. After that, methodology on CBR application to personalise learning is presented where learning styles play a dominate role as key factor in proposed personalised intelligent learning system model based on students profiling and personalised learning process model. The algorithm (the sequence of steps) to implement this model is also presented in the paper.
The paper aims to analyse application trends of intelligent multi-agent systems to personalise learning. First of all, systematic literature review was performed. Based on the systematic review analysis, the main trends on applying multi-agent systems to personalise learning were identified. Second, main requirements and components for an educational multi-agent system were formulated. Third, based on these components a model of intelligent personalized system is proposed. The system employs five intelligent agents: (1) learning styles identification software agent, (2) learner profile creation software agent, (3) pedagogical suitability software agent, (4) optimal learning units/scenarios creation software agent, and (5) learning analytics/educational data mining software agent.
The paper aims to analyse Educational Data Mining/Learning Analytics application trends to personalise learning. First of all, systematic literature review was performed. Based on the systematic review analysis, the main trends on applying educational data mining methods to personalise learning were identified. Second, three main tendencies on educational data mining/learning analytics application in education were formulated. They are: (a) Educational Data Mining/Learning Analytics support self-directed autonomous learning; (b) Educational Data Mining/Learning Analytics systems become essential tools of educational management; and (c) most teaching is delegated to computers, and Educational Data Mining/Learning Analytics based recommendations become better and more reliable than those that can be produced by even the best-trained teachers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.