The characterization of cell-free DNA (cfDNA) originating from placental trophoblast in maternal plasma provides a powerful tool for non-invasive diagnosis of fetal and obstetrical complications. Due to its placental origin, the specific epigenetic features of this DNA (commonly known as cell-free fetal DNA) can be utilized in creating universal ‘fetal’ markers in maternal plasma, thus overcoming the limitations of gender- or rhesus-specific ones. The goal of this study was to compare the performance of relevant approaches and assays evaluating the amount of cfDNA in maternal plasma throughout gestation (7.2–39.5 weeks). Two fetal- or placental- specific duplex assays (RPP30/SRY and RASSF1A/β-Actin) were applied using two technologies, real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR). Both methods revealed similar performance parameters within the studied dynamic range. Data obtained using qPCR and ddPCR for these assays were positively correlated (total cfDNA (RPP30): R = 0.57, p = 0.001/placental cfDNA (SRY): R = 0.85, p<0.0001; placental cfDNA (RASSF1A): R = 0.75, p<0.0001). There was a significant correlation in SRY and RASSF1A results measured with qPCR (R = 0.68, p = 0.013) and ddPCR (R = 0.56, p = 0.039). Different approaches also gave comparable results with regard to the correlation of the placental cfDNA concentration with gestational age and pathological outcome. We conclude that ddPCR is a practical approach, adaptable to existing qPCR assays and well suited for analysis of cell-free DNA in plasma. However, it may need further optimization to surpass the performance of qPCR.
The placenta is a multifunctional organ that regulates key aspects of pregnancy maintenance and fetal development. As the placenta is in direct contact with maternal blood, cellular products (DNA, RNA, proteins, etc.) from the placenta can enter maternal circulation by a variety of ways. The application of serum proteins and circulating placental derived DNA has been well demonstrated for the diagnosis of aneuploidy, and there is great interest in exploring the use of placental biomarkers for the prediction of a range of fetal health parameters. In this review, we discuss how placental biomarkers might be used for the diagnosis and early detection of preeclampsia, fetal growth restriction and inflammation associated with preterm birth. We emphasize how increased understanding of the underlying placental biology can aid in the interpretation of such approaches and development of new biomarkers that can help predict the onset of pregnancy and neonatal health concerns before they manifest.
Triploidy is a relatively common cause of miscarriage; however, recurrent triploidy has rarely been reported. A healthy 34-year-old woman was ascertained because of 18 consecutive miscarriages with triploidy found in all 5 karyotyped losses. Molecular results in a sixth loss were also consistent with triploidy. Genotyping of markers near the centromere on multiple chromosomes suggested that all six triploid conceptuses occurred as a result of failure to complete meiosis II (MII). The proband's mother had also experienced recurrent miscarriage, with a total of 18 miscarriages. Based on the hypothesis that an inherited autosomal-dominant maternal predisposition would explain the phenotype, whole-exome sequencing of the proband and her parents was undertaken to identify potential candidate variants. After filtering for quality and rarity, potentially damaging variants shared between the proband and her mother were identified in 47 genes. Variants in genes coding for proteins implicated in oocyte maturation, oocyte activation or polar body extrusion were then prioritized. Eight of the most promising candidate variants were confirmed by Sanger sequencing. These included a novel change in the PLCD4 gene, and a rare variant in the OSBPL5 gene, which have been implicated in oocyte activation upon fertilization and completion of MII. Several variants in genes coding proteins playing a role in oocyte maturation and early embryonic development were also identified. The genes identified may be candidates for the study in other women experiencing recurrent triploidy or recurrent IVF failure.
During pregnancy, the placenta releases a variety of nucleic acids (including deoxyribonucleic acid, messenger ribonucleic acid, or microribonucleic acids) either as a result of cell turnover or as an active messaging system between the placenta and cells in the maternal body. The profile of released nucleic acids changes with the gestational age and has been associated with maternal and fetal parameters. It also can directly reflect pathological changes in the placenta. Nucleic acids may therefore provide a rich source of novel biomarkers for the prediction of pregnancy complications. However, their utility in the clinical setting depends, first, on overcoming some technical considerations in their quantification, and, second, on developing a better understanding of the factors that influence their function and abundance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.