The plasma protein fetuin-A mediates the formation of protein-mineral colloids known as calciprotein particles (CPP)-rapid clearance of these CPP by the reticuloendothelial system prevents errant mineral precipitation and therefore pathological mineralization (calcification). The mutant mouse strain D2,Ahsg-/-combines fetuin-A deficiency with the calcification-prone DBA/2 genetic background, having a particularly severe compound phenotype of microvascular and soft tissue calcification. Here we studied mechanisms leading to soft tissue calcification, organ damage and death in these mice. We analyzed mice longitudinally by echocardiography, X-ray-computed tomography, analytical electron microscopy, histology, mass spectrometry proteomics, and genome-wide microarray-based expression analyses of D2 wildtype and Ahsg-/-mice. Fetuin-A-deficient mice had calcified lesions in myocardium, lung, brown adipose tissue, reproductive organs, spleen, pancreas, kidney and the skin, associated with reduced growth, cardiac output and premature death. Importantly, early-stage calcified lesions presented in the lumen of the microvasculature suggesting precipitation of mineral containing complexes from the fluid phase of blood. Genomewide expression analysis of calcified lesions and surrounding (not calcified) tissue, together with morphological observations, indicated that the calcification was not associated with osteochondrogenic cell differentiation, but rather with thrombosis and fibrosis. Collectively, these results demonstrate that soft tissue calcification can start by intravascular mineral deposition causing microvasculopathy, which impacts on growth, organ function and survival. Our study underscores the importance of fetuin-A and related systemic regulators of calcified matrix metabolism to prevent cardiovascular disease, especially in dysregulated mineral homeostasis.
Objective -The plasma protein fetuin-A mediates the formation of protein-mineral colloids known as calciprotein particles (CPP) -rapid clearance of these CPP by the reticuloendothelial system prevents errant mineral precipitation and therefore ectopic mineralization (calcification). The mutant mouse strain D2,Ahsg-/-combines fetuin-A deficiency with the mineralization-prone DBA/2 genetic background, having a particularly severe compound phenotype of microvascular and soft tissue mineralization. Here we studied mechanisms leading to soft tissue mineralization, organ damage and premature aging in these mice.Approach and Results -We analyzed mice longitudinally by echocardiography, X-raycomputed tomography, analytical electron microscopy, histology, mass spectrometry proteomics, and genome-wide microarray-based expression analyses of D2 wildtype and Ahsg-/-mice.Fetuin-A deficient mice had calcified lesions in myocardium, lung, brown adipose tissue, reproductive organs, spleen, pancreas, kidney and the skin, associated with reduced growth, cardiac output and premature aging. Importantly, early stage calcified lesions presented in the lumen of the microvasculature suggesting precipitation of mineral containing complexes from the fluid phase of blood. Genome-wide expression analysis of calcified lesions and surrounding (not calcified) tissue, together with morphological observations, indicated that the ectopic mineralization was not associated with osteochondrogenic cell differentiation, but rather with thrombosis and fibrosis.Conclusions -Collectively, these results demonstrate that pathological mineralization can start by intravascular mineral deposition causing microvasculopathy, which impacts on growth, organ function and survival. Our study underscores the importance of fetuin-A and related systemic regulators of mineralized matrix metabolism to prevent cardiovascular disease, especially in dysregulated mineral homeostasis.
Calcium and phosphate are important components of your teeth and bones. Proper incorporation of calcium and phosphate into teeth and bones is called mineralization. If there is too much calcium or phosphate in your blood stream, your body keeps mineralization under control with a protein called fetuin-A. Fetuin-A accompanies calcium and phosphate as they travel through the blood stream, preventing dangerous mineralization from happening in other bodily tissues and helping the excess calcium and phosphate to leave the body through the kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.