The incidence of cholangiocellular carcinoma (CCC) is increasing worldwide. Using a transgenic mouse model, we found that expression of the intracellular domain of Notch 1 (NICD) in mouse livers results in the formation of intrahepatic CCCs. These tumors display features of bipotential hepatic progenitor cells, indicating that intrahepatic CCC can originate from this cell type. We show that human and mouse CCCs are characterized by high expression of the cyclin E protein and identified the cyclin E gene as a direct transcriptional target of the Notch signaling pathway. Intriguingly, blocking γ-secretase activity in human CCC xenotransplants results in downregulation of cyclin E expression, induction of apoptosis, and tumor remission in vivo.
A reduction in the cellular levels of the cyclin kinase inhibitor p27(kip1) is frequently found in many human cancers and correlates directly with patient prognosis. In this work, we identify argyrin A, a cyclical peptide derived from the myxobacterium Archangium gephyra, as a potent antitumoral drug. All antitumoral activities of argyrin A depend on the prevention of p27(kip1) destruction, as loss of p27(kip1) expression confers resistance to this compound. We find that argyrin A exerts its effects through a potent inhibition of the proteasome. By comparing the cellular responses exerted by argyrin A with siRNA-mediated knockdown of proteasomal subunits, we find that the biological effects of proteasome inhibition per se depend on the expression of p27(kip1).
Entry of cells into the cell division cycle requires the coordinated activation of cyclin-dependent kinases (cdks) and the deactivation of cyclin kinase inhibitors. Degradation of p27kip1 is known to be a central component of this process as it allows controlled activation of cdk2-associated kinase activity. Turnover of p27 at the G1/S transition is regulated through phosphorylation at T187 and subsequent SCF skp2 -dependent ubiquitylation. However, detailed analysis of this process revealed the existence of additional pathways that regulate the abundance of the protein in early G1 and as cells exit quiescence. Here, we report on a molecular mechanism that regulates p27 stability by phosphorylation at T198. Phosphorylation of p27 at T198 prevents ubiquitin-dependent degradation of free p27. T198 phosphorylation also controls progression through the G1 phase of the cell cycle by regulating the association of p27 with cyclin-cdk complexes. Our results unveil the molecular composition of a pathway, which regulates the abundance and activity of p27kip1 during early G1. They also explain how the T187-and the T198-dependent turnover systems synergize to allow cell cycle progression in G1.
In the original article, which shows that the expression of Notch-ICD leads to the formation of intrahepatic cholangiocarcinomas, there is a duplication of actin blots in Figures 2G, 6F, and S2F.
Email: Irina Nickeleit -Nickeleit.Irina@MH-Hannover.de; Steffen Zender -Zender.Steffen@MH-Hannover.de; Uta Kossatz -Kossatz.Uta@MH-Hannover.de; Nisar P Malek* -Malek.Nisar@MH-Hannover.de * Corresponding author
AbstractThe cyclin kinase inhibitor p27 kip1 acts as a potent tumor supressor protein in a variety of human cancers. Its expression levels correlate closely with the overall prognosis of the affected patient and often predict the outcome to different treatment modalities. In contrast to other tumor suppressor proteins p27 expression levels in tumor cells are frequently regulated by ubiquitin dependent proteolysis. Re-expression of p27 in cancer cells therefore does not require gene therapy but can be achieved by interfering with the protein turnover machinery. In this review we will summarize experimental results which highlight the potential use of p27 as a target for oncological therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.