The objective of this investigation is to study silica-doped/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) composite membranes for operation in hydrogen/oxygen proton-exchange membrane fuel cells ranging from room temperature (RT) up to 120 °C. The sulfonated PPO composite membranes were prepared using a sol–gel process employing reaction with tetra-ethoxysilane (TEOS) followed by heat treatment at 60, 90, and 120 °C, respectively. The presence of silicon oxide in the composite membranes was evaluated using FTIR spectroscopy, while thermal properties were studied using thermal gravimetric analysis-differential scanning calorimetric (TGA-DSC) measurements. Additionally, ion exchange capacity, water uptake, and proton conductivity characterizations were also carried out. It was observed that water uptake for 75% PPO sulfonated composite membrane treated at 120 °C is higher than that of NafionTM membrane and the proton conductivity value measured at 120 °C is 0.35·10−1 S/cm. Therefore, the composite membranes are potentially suitable for high temperature fuel cell applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.