Sperm DNA damage has a negative association with live-birth rates after IVF, Reproductive BioMedicine Online (2012), doi: http://dx.doi.org/10. 1016/j.rbmo.2012.09.019 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Sperm DNA damage negatively affects live-birth rates in IVF patientsSperm DNA damage has a negative association with live-birth rates after IVF AbstractSperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with <25% sperm DNA fragmentation had a livebirth rate of 33%; in contrast, couples with <50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low livebirth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF.
The systemic delivery of genetic therapies required for the treatment of inaccessible tumors and metastases remains a challenge despite the development of various viral and synthetic vector systems. Here we show that a synthetic vector system based on polypropylenimine dendrimers has the
Purpose: A major factor limiting the effective clinical management of colorectal cancer (CRC) is resistance to chemotherapy. Therefore, the identification of novel, therapeutically targetable mediators of resistance is vital.Experimental design: We used a CRC disease-focused microarray platform to transcriptionally profile chemotherapy-responsive and nonresponsive pretreatment metastatic CRC liver biopsies and in vitro samples, both sensitive and resistant to clinically relevant chemotherapeutic drugs (5-FU and oxaliplatin). Pathway and gene set enrichment analyses identified candidate genes within key pathways mediating drug resistance. Functional RNAi screening identified regulators of drug resistance.Results: Mitogen-activated protein kinase signaling, focal adhesion, cell cycle, insulin signaling, and apoptosis were identified as key pathways involved in mediating drug resistance. The G-protein-coupled receptor galanin receptor 1 (GalR1) was identified as a novel regulator of drug resistance. Notably, silencing either GalR1 or its ligand galanin induced apoptosis in drug-sensitive and resistant cell lines and synergistically enhanced the effects of chemotherapy. Mechanistically, GalR1/galanin silencing resulted in downregulation of the endogenous caspase-8 inhibitor FLIP L , resulting in induction of caspase-8-dependent apoptosis. Galanin mRNA was found to be overexpressed in colorectal tumors, and importantly, high galanin expression correlated with poor disease-free survival of patients with early-stage CRC.Conclusion: This study shows the power of systems biology approaches to identify key pathways and genes that are functionally involved in mediating chemotherapy resistance. Moreover, we have identified a novel role for the GalR1/galanin receptor-ligand axis in chemoresistance, providing evidence to support its further evaluation as a potential therapeutic target and biomarker in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.