During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.
An ambitious 10‐year collaborative program is described to invent, design, demonstrate, and support commercialization of integrated biopharmaceutical manufacturing technology intended to transform the industry. Our goal is to enable improved control, robustness, and security of supply, dramatically reduced capital and operating cost, flexibility to supply an extremely diverse and changing portfolio of products in the face of uncertainty and changing demand, and faster product development and supply chain velocity, with sustainable raw materials, components, and energy use. The program is organized into workstreams focused on end‐to‐end control strategy, equipment flexibility, next generation technology, sustainability, and a physical test bed to evaluate and demonstrate the technologies that are developed. The elements of the program are synergistic. For example, process intensification results in cost reduction as well as increased sustainability. Improved robustness leads to less inventory, which improves costs and supply chain velocity. Flexibility allows more products to be consolidated into fewer factories, reduces the need for new facilities, simplifies the acquisition of additional capacity if needed, and reduces changeover time, which improves cost and velocity. The program incorporates both drug substance and drug product manufacturing, but this paper will focus on the drug substance elements of the program.
Beta-amyloid peptide (Aβ) is the major protein constituent found in senile plaques in Alzheimer's disease (AD). It is believed that Aβ plays a role in neurodegeneration associated with AD and that its toxicity is related to its structure or aggregation state. In this study, an approach based on chemical modification of primary amines and mass spectrometric (MS) detection was used to identify residues on Aβ peptide that were exposed or buried upon changes in peptide structure associated with aggregation. Results indicate that the N terminus was the most accessible primary amine in the fibril, followed by lysine 28, then lysine 16. A kinetic analysis of the data was then performed to quantify differences in accessibility between these modification sites. We estimated apparent equilibrium unfolding constants for each modified site of the peptide, and determined that the unfolding constant for the N terminus was approximately 100 times greater than that for K28, which was about 6 times greater than that for K16. Understanding Aβ peptide structure at the residue level is a first step in designing novel therapies for prevention of Aβ structural transitions and/or cell interactions associated with neurotoxicity in Alzheimer's disease.
Next generation manufacturing (NGM) has evolved over the past decade to a point where large biopharmaceutical organizations are making large investments in the technology and considering implementation in clinical and commercial processes. There are many well-considered reasons to implement NGM. For the most part, organizations will not fund NGM unless the implementation benefits the funding organization by providing reduced costs, reduced time or additional needed capabilities. Productivity improvements gained from continuous purification are shown in this work, which used a new system that fully integrates and automates several downstream unit operations of a biopharmaceutical process to provide flexibility and easy implementation of NGM. The equipment and automation supporting NGM can be complicated and expensive. Biopharmaceutical Process Development considered two options: (1) design its own NGM system or (2) buy a pre-built system. PAK BioSolutions (Virginia, US), provides a turn-key automated and integrated system that can operate up to four continuous purification stages simultaneously, while maintaining a small footprint in the manufacturing plant. The PAK system provides significant cost benefits (~10x lower) compared to the alternative – integration of many different pieces of equipment through a Distributed Control System (DCS) that would require significant engineering time for design, automation and integration. Integrated and Continuous Biomanufacturing can lead to significant reductions in facility size, reduced manufacturing costs, and enhanced product quality when compared to the traditional batch mode of operation. The PAK system uses new automation strategies that robustly link unit operations. We present the optimized process fit, sterility and bioburden control strategy, and automation features (such as pH feedback control and in-line detergent addition) that enabled continuous operation of a 14 day end-to-end monoclonal antibody purification process at the clinical manufacturing scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.