Tinnitus, the perception of sound in the absence of external stimuli, is a common and often disturbing symptom that is not understood physiologically. This paper presents an approach for using functional magnetic resonance imaging (fMRI) to investigate the physiology of tinnitus and demonstrates that the approach is effective in revealing tinnitus-related abnormalities in brain function. Our approach as applied here included 1) using a masking noise stimulus to change tinnitus loudness and examining the inferior colliculus (IC) for corresponding changes in activity, 2) separately considering subpopulations with particular tinnitus characteristics, in this case tinnitus lateralized to one ear, 3) controlling for intersubject differences in hearing loss by considering only subjects with normal or near-normal audiograms, and 4) tailoring the experimental design to the characteristics of the tinnitus subpopulation under study. For lateralized tinnitus subjects, we hypothesized that sound-evoked activation would be abnormally asymmetric because of the asymmetry of the tinnitus percept. This was tested using two reference groups for comparison: nontinnitus subjects and nonlateralized tinnitus subjects. Binaural noise produced abnormally asymmetric IC activation in every lateralized tinnitus subject (n = 4). In reference subjects (n = 9), activation (i.e., percent change in image signal) in the right versus left IC did not differ significantly. Compared with reference subjects, lateralized tinnitus subjects showed abnormally low percent signal change in the IC contralateral, but not ipsilateral, to the tinnitus percept. Consequently, activation asymmetry (i.e., the ratio of percent signal change in the IC ipsilateral versus contralateral to the tinnitus percept) was significantly greater in lateralized tinnitus subjects as compared with reference subjects. Monaural noise also produced abnormally asymmetric IC activation in lateralized tinnitus subjects. Two possible models are presented to explain why IC activation was abnormally low contralateral to the tinnitus percept in lateralized tinnitus subjects. Both assume that the percept is associated with abnormally high ("tinnitus-related") neural activity in the contralateral IC. Additionally, they assume that either 1) additional activity evoked by sound was limited by saturation or 2) sound stimulation reduced the level of tinnitus-related activity as it reduced the loudness of (i.e., masked) the tinnitus percept. In summary, this work demonstrates that fMRI can provide objective measures of lateralized tinnitus and tinnitus-related activation can be interpreted at a neural level.
Recently, magnetic resonance properties of cerebral gray matter have been spatially mapped--in vivo--over the cortical surface. In one of the first neuroscientific applications of this approach, this study explores what can be learned about auditory cortex in living humans by mapping longitudinal relaxation rate (R1), a property related to myelin content. Gray matter R1 (and thickness) showed repeatable trends, including the following: (1) Regions of high R1 were always found overlapping posteromedial Heschl's gyrus. They also sometimes occurred in planum temporale and never in other parts of the superior temporal lobe. We hypothesize that the high R1 overlapping Heschl's gyrus (which likely indicates dense gray matter myelination) reflects auditory koniocortex (i.e., primary cortex), a heavily myelinated area that shows comparable overlap with the gyrus. High R1 overlapping Heschl's gyrus was identified in every instance suggesting that R1 may ultimately provide a marker for koniocortex in individuals. Such a marker would be significant for auditory neuroimaging, which has no standard means (anatomic or physiologic) for localizing cortical areas in individual subjects. (2) Inter-hemispheric comparisons revealed greater R1 on the left on Heschl's gyrus, planum temporale, superior temporal gyrus and superior temporal sulcus. This asymmetry suggests greater gray matter myelination in left auditory cortex, which may be a substrate for the left hemisphere's specialized processing of speech, language, and rapid acoustic changes. These results indicate that in vivo R1 mapping can provide new insights into the structure of human cortical gray matter and its relation to function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.