Aortic valve replacement is the commonest cardiac surgical operation performed worldwide for infective endocarditis (IE). Long-term durability and avoidance of infection relapse are goals of the procedure. However, no detailed guidelines on prosthesis selection and surgical strategies guided by the comprehensive evaluation of the extension of the infection and its microbiological characteristics, clinical profile of the patient, and risk of infection recurrence are currently available. Conventional mechanical or stented xenografts are the preferred choice for localized aortic infection. However, in cases of complex IE with the involvement of the root or the aortomitral continuity, the use of homograft is suggested according to the surgeon and center experience. Homograft use should be counterbalanced against the risk of structural degeneration. Prosthetic bioroot or prosthetic valved conduit (mechanical and bioprosthetic) are also potentially suitable alternatives. Further development of preservation techniques enabling longer durability of allogenic substitutes is required. We evaluate the current evidence for the use of valve substitutes in aortic valve endocarditis and propose an evidence-based algorithm to guide the choice of therapy. We performed a systemic review to clarify the contemporary surgical management of aortic valve endocarditis.
The clinical problemAdvances in the management of acute coronary syndromes have increased survival among patients with coronary artery disease; however, secondary mitral regurgitation (MR) still affects more than 2.5 million patients per year, with a double mortality rate in case of moderate-to-severe MR (1). The main long-term manifestations of untreated secondary MR are left ventricular dysfunction and heart failure (HF), with tremendous social implications considering the large part of the population involved in the prevalence of the disease (1-3).
Patients undergoing transcatheter aortic valve replacement (TAVR) might have an associated significant MR that can potentially lead to left ventricular (LV) failure after procedure. Considering the specific alterations in the mitral valve in TAVR scenario and the widespread use of TAVR in recent years, it appears important to know and understand the anatomical, functional and clinical implications to develop adequate strategies for the future. Patients with severe mitral regurgitation (MR) have been generally excluded from randomized clinical trials, making poor the impact that associated MR can have on clinical outcomes after TAVR. Several factors must be considered whose presence influences the severity of MR.For example, the elevated prevalence of coronary disease with consequent ischemic MR may account for LV dilation observed at the end stage of aortic stenosis. Evidence randomized studies and registries suggests that the rate of concomitant moderate-to-severe MR in patients undergoing TAVR oscillates between 2% and 33%, and patients with moderate to severe MR may have hemodynamic frailty with clinical deterioration during mechanical intervention. Short-and long-term outcomes, including cardiac mortality, appear to be influenced by the existence of preoperative moderate-to-severe MR or by the postprocedural worsening of mild MR, generally due to adverse LV remodeling. The incidence and the prognostic effect of concomitant MR in patients undergoing TAVR requires specific attention as might trigger adjunctive strategy treatment which should be carefully evaluated in clinical trials.
The role of the aortic root is to convert the accumulated elastic energy during systole into kinetic flow energy during diastole, in order to improve blood distribution in the coronary tree. Therefore, the sinuses of Valsalva of the aortic root are not predisposed to accept any bulky material, especially in case of uncrushed solid calcific agglomerates. This concept underlines the differences between surgical aortic valve replacement, in which decalcification is a main part of the procedure, and transcatheter aortic valve replacement (TAVR). Cyclic changes in shape and size of the aortic root influence blood flow in the Valsalva sinuses. Recent papers have been investigating the dynamic changes of the aortic root and whether those differences might be correlated with clinical effects, and this paper aims to summarize part of this flourishing literature. Post-TAVR aortic root remodeling, dynamic flow and TAVR complications might have a fluidodynamic background, and clinically observed side effects such as thrombosis or leaflet degeneration should be further investigated in basic researches. Also, aortic root changes could impact valve type and size selection, affecting the decision of over-sizing or under-sizing in order to prevent valve embolization or coronary ostia obstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.