The
results of structural analysis and cation–anion interactions
of 10 ion pairs and their relevance for the physicochemical properties
of triethylammonium-based protic ionic liquids are reported. The calculations
were mainly performed by dispersion corrected density functional theory
method (B3LYP-GD3). It is shown that the dispersion correction is
important in the evaluation of the interaction energies of these compounds.
The role of anions in the formation of ion pairs and hydrogen-bonded
structure are analyzed. To obtain a quantitative measure of the strength
of H-bonds, the Bader’s theory of atoms in molecule (AIM) was
applied. The correlations between hydrogen bond lengths, their energies,
and electron-topological parameters at the H···O bond
critical point are presented.
The structural and energetic characteristics of protic ionic liquids (PILs) based on ethyl-, diethyl-, or triethylammonium cations with anions of phosphorus, trifluoroacetic, or p-toluenesulfonic acids have been investigated by density functional theory calculations at the B3LYP/6-31++G(d,p) level of theory. As a result of the interaction between acid and alkylamine, the H-bonded molecular complexes or H-bonded ion pairs have been obtained. The increasing number of ethyl groups attached to the nitrogen atom of amine and H-bond donor ability of acid causes a stronger H-bonding interaction leading to the formation of ion pairs. For all systems, the proton transfer between ion pairs and molecular complexes has been examined. Solvation effects have been also investigated using the solvent polarizable continuum model (CPCM).
We present the results of electronic structure calculations based on density functional theory (DFT) in order to investigate the reactions of the interaction of tertiary alkylamines with alkyl groups of different sizes (triethyl, tributyl, dimethylethyl, and diisopropylethyl) with trifluoroacetic acid. We have obtained data on the affinity of the studied amines with a proton. It has been shown that amine interaction with the acid leads to proton transfer from the acid to the amine and formation of ions held together in the ion pair by electrostatic interaction and a very strong hydrogen bond. We have also investigated the energy profiles of the proton transfer from the tertiary alkylammonium cation to the trifluoroacetate anion within the ion pair and found different correlations between the geometric characteristics of the H-bond and the parameters obtained by the natural bond orbitals and quantum theory of atoms in molecules analyses. It has been established that the interionic interactions in these systems weaken as the length and the degree of cation alkyl chain branching increase. A good qualitative agreement between the theoretical results and the experimental data on physicochemical properties has been obtained.
Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.