4840 The causes of drug resistance in acute leukemias (AL) have been studied very intensively and the key research was done on Bcl-2 family proteins. Last studies have showed that high level Bcl-2 expression in acute leukemia is really associated with drug resistance andpoor prognosis [Haematologica 2007, U. Testa]. It was demonstrated that lower Bax/Bcl-2 ratio (<0,3) was associated with FAB M0-M1 classes (p=.00001), poor-risk cytogenetics and poor prognosis [Blood 2003, G. Poeta]. But there were no studies on the dynamic evaluation of Bcl2 and Bax expression on CD34+ cells during chemotherapy. Renin-angiotensin system and angiotensin concertin enzyme (ACE) influence on leukogenesis is extensively investigated. It was reported that ACE expression on blast cells is high [Leuk Lymphoma 2006, S. Aksu]. Recent publications indicate that primitive hematopoietic precursors have different characteristics regarding ACE: CD34+ACE+cells transplanted into NOD/SCID mice contribute 10-fold higher numbers of multilineage blood cells than their CD34+ACE- counterparts and contain a significantly higher incidence of SCID-repopulating cells than the unfractionated CD34+ population [Blood 2008, V. Jokubaitis]. But it's still unknown how CD34+ACE+ cells in AL behave on and after chemotherapy. We have studied the dynamics of Bcl-2 and Bax expression by flow cytometry in CD34+ cells of peripheral blood (PB) and bone marrow (BM) in pts with AL. PB and BM samples were collected before treatment, on days +8, +36, only PB - on day + 21. Bcl-2 and Bax were detected on CD34+ cells by flow cytometry using specific monoclonal antibodies: CD34 (8G12, BD), Bcl-2 (100, BD), Bax (2D2, Santa Cruz). ACE (9B9, BD) expression was also evaluated. We calculated 10 000 cells in each sample. 10 pts were included in the study: 4 AML, 6 ALL. The control group comprised 4 healthy donors. At time of diagnosis CD34+ cells number in BM was 38,7%± 9,75, in PB - 38,3%± 8,14 in AL pts, not differing much in AML and ALL, and indicating blast cells population. CD34+ cells numbers in BM and PB of healthy donors were 1,35% and 0,23%, respectively. After induction therapy and WBC recovery (days +36-38) CD34+ cells number in AL pts decreased dramatically in BM to 3,83%±1,51 (p=0,001) and in PB to 0,98%± 0,29 (p=0,0001), indicating the efficacy of chemotherapy. The dynamics of Bcl-2, Bax and ACE expression on CD34+ cells of BM and PB in AL pts are presented in fig.1-6 As seen in the fig.1,2 CD34/Bcl-2 expression in BM is significantly higher (p=0,04) and in PB is similar in AL pts at the diagnosis comparing with donors. It's also worth to note that BM and PB CD34+ cells in donors had different expression characteristics of Bcl-2 demonstrating much higher level of antiapoptotic marker in PB cells. On the contrast CD34+ AL cells in BM and PB had similar characteristics regarding CD34/Bcl-2 expression. This expression level decreased substantially in BM at day +36 comparing with day 0 (p=0,04), but it never reached the donors level remaining extremely high and supposing the persistence of antiapoptotic activity in CD34+ cells in AL pts. It did not change at all during chemotherapy in PB cells, being identical to donors characteristics. The fig.2,3 demonstrate that, CD34/Bax expression in BM is almost 3-times higher (p=0,14) and in PB is twice lower (p=0,02) in AL pts in comparison with donors. It's interesting that CD34/Bax expression in leukemic BM and PB cells looks very similar, when in donors we had very low expression in BM and high - in PB. This fact demonstrates the heterogeneity of donor CD34+cells in BM and PB and points that leukemia CD34+cells in BM and PB are rather similar in Bax expression. Chemotherapy caused the significant augmentation of CD34/Bax expression in PB on day +8 (p=0,01) and near significant on day +21 (p= 0,09) showing the increased level of “dieing” cells in PB after cytostatic influence. The fig. 5,6 show that CD34/ACE coexpression in BM cells of AL pts and donors did not differ much at any time of evaluation. But CD34/ACE expression in PB cells of AL pts was much lower (p=0,02) than in donors and substantially increased at day +36 almost reaching the donor level. We may conclude that Bcl-2, Bax, ACE expression on CD34+ cells in AL pts and donors significantly differs, the dynamics of expression in AL while chemotherapy shows critical changes in CD34/Bcl-2 expression in BM, CD34/Bax and CD34/ACE in PB. Disclosures: No relevant conflicts of interest to declare.
4996 It was shown that drug resistance, poor-risk cytogenetics and poor prognosis in AL is associated with high level of Bcl-2 expression and low Bax/Bcl-2 ratio (<0,3). Fas-antigen (CD95) as a protein triggering the extrinsic apoptotic pathway is differently expressed on hematopoietic precursors. More immature CD34+/CD38- AML blast cells have lower expression of Fas/Fas-L and lower Fas-induced apoptosis than CD34+/CD38+cells. CD34+/CD38− leukemia precursors also have a reduced sensitivity to daunorubicin in vitro and increased expression of multidrug resistance genes (mrp/lrp). CD34+ leukemia cells have not yet been properly characterized regarding the expression of angiotensin converting enzyme (ACE) which regulatory influence on hematopoiesis is now beeing extensively investigated. ACE expression on blast cells is high, but it's still unknown how CD34+ACE+ leukemia cells behave after chemotherapy. Recent publications indicate that CD34+ACE+ hematopoietic precursors transplanted into NOD/SCID mice contribute 10-fold higher numbers of multilineage blood cells than their CD34+ACE- counterparts. We have studied the dynamics of Bcl-2, Bax, CD95 and ACE expression on CD34+ cells in peripheral blood (PB) and bone marrow (BM) in AL pts during treatment. PB and BM samples were collected before and on +36 day after chemotherapy. The antigens were detected by flow cytometry using monoclonal antibodies. We calculated 10 000 cells in each sample. 19 pts were included in the study: 10 - AML and 9 - ALL. The control group comprised 8 healthy donors. At time of diagnosis there were 40±5,7% of CD34+ cells in BM and 26±4,9% - in PB. There was no significant difference between AML and ALL. CD34+ cells in BM and PB of healthy donors constituted 1,6% and 0,27%, respectively. After induction therapy (+36 day) CD34+ cells decreased in BM to 6,1%±3,3 (p=0,0001), in PB to 3,7%± 2,7 (p=0,0008) in all pts. The data on antigens expression on CD34+ cells of BM and PB are presented in table 1 CD34+/Bcl-2+ CD34+/Bax+ CD34+/CD95+ CD34+/ACE+ BM PB BM PB BM PB BM PB AML pts n=10 0 day 38±11,6* 41±14 24,4±7,9 29,2±7,6* 16,4±8,5 23,2±7,8 21,7±9,5 20,8±8,7* 36 day 13,5±3,4** 23,7±5** 46,2±11,5 50,3±11 19,9±5,5 36,4±10 34±6,6 35±9,2** ALL pts n=9 0 day 36±11 33,7±12 46,2±9,4 37,4±3,7* 3,4±1,1* 7,1±2,5* 41±10,9 33,2±9,7* 36 day 18,4±5,8 26±8,9 38±11,8 40,5±10 26,2±9,1** 40,9±9,2** 34±10 62,8±10** Donors n=8 11,7±1,6 26,1±5,9 22,8±4 67,8±6,7 13,4±3,2 47,7±11,6 28±5,3 68,2±10,2 * − p<0.05 compare with donors ** − p<0.05 compare with day 0 CD34/Bcl-2 expression in BM in AML pts is significantly higher (p=0,04) at the diagnosis comparing with donors. CD34/Bcl-2 expression in PB in AML pts and in BM and PB in ALL pts is higher too, but not significantly. This expression level decreased substantially in BM and PB in AML pts on +36 day comparing with day 0 (p<0,05). We did not found significant changes in ALL pts. CD34/Bax expression in PB is significantly lower (p=0,003) both in AML and ALL pts in comparison with donors. In AML, not in ALL, chemotherapy caused augmentation of Bax expression in CD34+ BM and PB cells on +36 day. BM and PB CD34+ cells in donors had different expression characteristics of Bcl-2 and Bax, demonstrating much higher level of pro- and antiapoptotic markers in PB cells. On the contrast CD34+ leukemia cells in BM and PB had similar characteristics regarding CD34/Bcl-2 and CD34/Bax expression. This fact demonstrates the heterogeneity of donor CD34+cells in BM and PB and points that leukemia CD34+cells in BM and PB are rather similar. CD95 expression on CD34+ BM and PB before treatment is significantly lower (p=0,01, p=0,008) in ALL pts in comparison with donors, and this expression level increased after chemotherapy (p<0,05). CD34/CD95 expression in AML pts is similar with donors, and we didn't find changes after treatment. CD34/ACE coexpression in BM cells of leukemia pts and donors did not differ much at any time of evaluation. But CD34/ACE expression in PB cells of AML and ALL pts was much lower (p<0,05) than in donors and substantially increased on the day 36. So, our data demonstrate that Bcl-2, Bax, CD95 and ACE expression on CD34+ cells in AL pts and donors significantly differs. The chemotherapy provokes critical changes in CD34/CD95 expression in BM and PB in ALL pts, CD34/Bcl-2 expression in AML pts and ÑÂ34/ACE expression in PB in all AL pts. Disclosures: No relevant conflicts of interest to declare.
Though the initial response to induction therapy, indicating rapid tumor clearance, is currently considered to be one of the most important prognostic factors, detection of submicroscopic levels of minimal residual disease (MRD), by means of PCR or immunophenotyping after induction and during different stages of treatment, has also become important in predicting outcome in ALL patients. We initiated a study using parallel PCR and flow cytometry to monitor MRD in adult acute lymphoblastic leukemia (ALL) patients treated by standard approach. Bone marrow samples were analyzed at diagnosis, after pre-phase (one week of steroid therapy to determine steroid responsiveness), at 8-weeks post induction, at consolidation, before maintenance (+7–8 mo), and during maintenance for the detection of clonal IgH, TCR-gamma rearrangements by PCR (The level of detection sensitivity is 10−3 to 10−4). Specific markers were identified for 88% of the patients (30/34); prolonged monitoring was carried out in 22 patients with follow up from 2 to 24 months. Fifteen of those patients were analyzed by three-color flow cytometry analysis with a panel of 20 monoclonal antibodies for patient-specific aberrant leukemia-associated phenotype (LAP) at diagnosis and before maintenance (10−4). Contrary to PCR analysis, LAPs were detected in all patients. The most common LAPs were CD19/34/10, CD 19/34/TdT, and CD19/34/IgM. Clinical CR was achieved in 85% of patients. Prednisone resistance was detected in 71% of patients. MRD was detected by PCR in all patients after pre-phase, in 21/22 (95%) after 1st induction phase, in 11/15 (73%) after 2nd induction phase, in 10/15 (67%) after consolidation, and in 8/14 (57%) before maintenance. Flow cytometry data coincides with molecular parameters: only 4 of 10 patients examined before maintenance (+7–8 mo) had no cells with LAP. Comparing our parallel measurements we have noted discrepancies in 3 of 10 cases. Two immunologically positive patients were PCR-negative, and one PCR-positive patient was immunologically negative. All patients (n=3) whose PCR probes were positive more than twice, relapsed at different time points; no relapses were noted in once positive patients (n=3), and 1of 8 PCR-negative patients relapsed. Our data indicate that both methods are effective and relevant in detection of MRD. They show very slow tumor clearance in ALL patients. MRD positivity reflects the higher relapse probability. More patients can be followed for MRD with flow-cytometry, due to higher detection rate of LAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.