Note: Supplementary information is available on the Nature Genetics website. ACKNOWLEDGMENTS We thank the clinicians and families for providing samples, N. Killeen for technical assistance and the Wellcome Trust for financial support.
Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. The axonal form of the disease is designated as "CMT type 2" (CMT2). Although four loci known to be implicated in autosomal dominant CMT2 have been mapped thus far (on 1p35-p36, 3q13. 1, 3q13-q22, and 7p14), no one causative gene is yet known. A large Russian family with CMT2 was found in the Mordovian Republic (Russia). Affected members had the typical CMT2 phenotype. Additionally, several patients suffered from hyperkeratosis, although the association, if any, between the two disorders is not clear. Linkage with the CMT loci already known (CMT1A, CMT1B, CMT2A, CMT2B, CMT2D, and a number of other CMT-related loci) was excluded. Genomewide screening pinpointed the disease locus in this family to chromosome 8p21, within a 16-cM interval between markers D8S136 and D8S1769. A maximum two-point LOD score of 5.93 was yielded by a microsatellite from the 5' region of the neurofilament-light gene (NF-L). Neurofilament proteins play an important role in axonal structure and are implicated in several neuronal disorders. Screening of affected family members for mutations in the NF-L gene and in the tightly linked neurofilament-medium gene (NF-M) revealed the only DNA alteration linked with the disease: a A998C transversion in the first exon of NF-L, which converts a conserved Gln333 amino acid to proline. This alteration was not found in 180 normal chromosomes. Twenty unrelated CMT2 patients, as well as 26 others with an undetermined form of CMT, also were screened for mutations in NF-L, but no additional mutations were found. It is suggested that Gln333Pro represents a rare disease-causing mutation, which results in the CMT2 phenotype.
Autosomal recessive (AR) STAT1 deficiency is a severe inborn error of immunity disrupting cellular responses to type I, II, and III IFNs, and IL-27, and conferring a predisposition to both viral and mycobacterial infections. We report the genetic, immunological, and clinical features of an international cohort of 32 patients from 20 kindreds: 24 patients with complete deficiency, and 8 patients with partial deficiency. Twenty-four patients suffered from mycobacterial disease (bacillus CalmetteGu erin 5 13, environmental mycobacteria 5 10, or both in 1 patient). Fifty-four severe viral episodes occurred in sixteen patients, mainly caused by Herpesviridae viruses. Attenuated live measles, mumps, and rubella and/or varicella zoster virus vaccines triggered severe reactions in the five patients with complete deficiency who were vaccinated. Seven patients developed features of hemophagocytic syndrome. Twenty-one patients died, and death was almost twice as likely in patients with complete STAT1 deficiency than in those with partial STAT1 deficiency. All but one of the eight survivors with AR complete deficiency underwent hematopoietic stem cell transplantation. Overall survival after hematopoietic stem cell transplantation was 64%. A diagnosis of AR STAT1 deficiency should be considered in children with mycobacterial and/or viral infectious diseases. It is important to distinguish between complete and partial forms of AR STAT1 deficiency, as their clinical outcome and management differ significantly.
Charcot-Marie-Tooth disease (CMT) and related inherited peripheral neuropathies, including Dejerine-Sottas syndrome, congenital hypomyelination, and hereditary neuropathy with liability to pressure palsies (HNPP), are caused by mutations in three myelin genes: PMP22, MPZ and Cx32 (GJB1). The most common mutations are the 1.5 Mb CMT1A tandem duplication on chromosome 17p11.2-p12 in CMT1 patients and the reciprocal 1.5 Mb deletion in HNPP patients. We performed a mutation screening in 174 unrelated CMT patients and three HNPP families of Russian origin. The unrelated CMT patients included 108 clinically and electrophysiologically diagnosed CMT1 cases, 32 CMT2 cases, and 34 cases with unspecified CMT. Fifty-nine CMT1A duplications were found, of which 58 belonged to the CMT1 patient group. We found twelve distinct mutations in Cx32, six mutations in MPZ, and two mutations in PMP22. Of these respectively, eight, five, and two lead to a CMT1 phenotype. Eight mutations (Cx32: Ile20Asn/Gly21Ser, Met34Lys, Leu90Val, and Phe193Leu; MPZ: Asp134Gly, Lys138Asn, and Thr139Asn; PMP22: ValSer25-26del) were not reported previously. Phenotype-genotype correlations were based on nerve conduction velocity studies and mutation type.
Background Diamond Blackfan anemia (DBA) is a genetically and clinically heterogeneous ribosomopathy and inherited bone marrow failure syndrome characterized by anemia, reticulocytopenia and decreased erythroid precursors in the bone marrow with an increased risk of malignancy and in approximately 50%, physical abnormalities. Methods We retrospectively analyzed clinical data from 77 patients with DBA born in the Russian Federation from 1993–2014. In 74 families there was one clinically affected individual; in only three instances a multiplex family was identified. Genomic DNA from 57 DBA patients and their first-degree relatives was sequenced for mutations in RPS19, RPS10, RPS24, RPS26, RPS7, RPS17, RPL5, RPL11, RPL35a and GATA1. Results Severe anemia presented before 8 months of age in all 77 patients; before 2 months in 61 (78.2%); before 4 months in 71 (92.2%). Corticosteroid therapy was initiated after 1 year of age in the majority of patients. Most responded initially to steroids, while 5 responses were transient. Mutations in RP genes were detected in 35 of 57 patients studied: 15 in RPS19, 6 in RPL5, 3 in RPS7, 3 each in RPS10, RPS26 and RPL11 and 1 each in RPS24 and RPL35a; 24 of which having not been previously reported. In one patient a balanced chromosomal translocation involving RPS19 was found. No mutations in GATA1 were found. Conclusion In our cohort from an ethnically diverse population the distribution of mutations among RP genes was approximately the same as was reported by others, although within genotypes most of the mutations had not been previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.