Замкнутые геодезические на кусочно гладких поверхностях вращения постоянной кривизны Доказана теорема о структуре изломов обобщенных геодезических на кусочно гладких поверхностях в двумерном и n-мерном случаях. В качестве примеров найдены все простые замкнутые геодезические: на цилиндре (с основаниями); на поверхности, образованной объединением двух сферических шапочек; на поверхности, образованной объединением двух конусов. В последнем случае исследованы на устойчивость замкнутые геодезические (в естественном конечномерном классе возмущений) и найдены сопряженные точки и индексы геодезических. Эта задача связана с сопряженными точками на кусочно гладких биллиардах и поверхностях вращения. Библиография: 40 названий. Ключевые слова: риманова геометрия, кусочно гладкая поверхность вращения, замкнутые геодезические, сопряженные точки.
We present a model for laser cooling of a single ion in the Penning trap. The model solves the equations of motion in the presence of the damping caused by the interaction with the laser beam, and predicts for the first time the dependence of the cooling rates for the two radial degrees of freedom in the trap as a function of the laser detuning, laser beam offset and saturation parameter. The conditions derived for both radial degrees of freedom to be cooled simultaneously agree with those found in earlier studies. The results indicate that under conditions where both motions are cooled simultaneously, the cooling rates are both significantly smaller than the maximum rate for either motion considered in isolation. Furthermore, the magnetron cooling rate is typically much lower than the cyclotron cooling rate, as has been found in experiments. The model indicates how the cooling rate for a single ion may be optimized. †
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.