Twenty-nine human aqueous humor samples from patients with eye diseases such as cataract and glaucoma with and without pseudoexfoliation syndrome were characterized by LC-high resolution MS analysis. In total, 269 protein groups were identified with 1% false discovery rate including 32 groups that were not reported previously for this biological fluid. Since the samples were analyzed individually, but not pooled, 36 proteins were identified in all samples, comprising the constitutive proteome of the fluid. The most dominant molecular function of aqueous humor proteins as determined by GO analysis is endopeptidase inhibitor activity. Label-free protein quantification showed no significant difference between glaucoma and cataract aqueous humor proteomes. At the same time, we found decrease in the level of apolipoprotein D as a marker of the pseudoexfoliation syndrome. The data are available from ProteomeXchange repository (PXD002623).
Genomic and proteomic data were integrated into the proteogenomic workflow to identify coding genomic variants of Human Embryonic Kidney 293 (HEK-293) cell line at the proteome level. Shotgun proteome data published by Geiger et al. (2012), Chick et al. (2015), and obtained in this work for HEK-293 were searched against the customized genomic database generated using exome data published by Lin et al. (2014). Overall, 112 unique variants were identified at the proteome level out of ∼1200 coding variants annotated in the exome. Seven identified variants were shared between all the three considered proteomic datasets, and 27 variants were found in any two datasets. Some of the found variants belonged to widely known genomic polymorphisms originated from the germline, while the others were more likely resulting from somatic mutations. At least, eight of the proteins bearing amino acid variants were annotated as cancer-related ones, including p53 tumor suppressor. In all the considered shotgun datasets, the variant peptides were at the ratio of 1:2.5 less likely being identified than the wild-type ones compared with the corresponding theoretical peptides. This can be explained by the presence of the so-called "passenger" mutations in the genes, which were never expressed in HEK-293 cells. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD002613 (http://proteomecentral.proteomexchange.org/dataset/PXD002613).
Oncolytic viruses have gained momentum in the last decades as a promising tool for cancer treatment. Despite the progress, only a fraction of patients show a positive response to viral therapy. One of the key variable factors contributing to therapy outcomes is interferon-dependent antiviral mechanisms in tumor cells. Here, we evaluated this factor using patient-derived glioblastoma multiforme (GBM) cultures. Cell response to the type I interferons’ (IFNs) stimulation was characterized at mRNA and protein levels. Omics analysis revealed that GBM cells overexpress interferon-stimulated genes (ISGs) and upregulate their proteins, similar to the normal cells. A conserved molecular pattern unambiguously differentiates between the preserved and defective responses. Comparing ISGs’ portraits with titration-based measurements of cell sensitivity to a panel of viruses, the “strength” of IFN-induced resistance acquired by GBM cells was ranked. The study demonstrates that suppressing a single ISG and encoding an essential antiviral protein, does not necessarily increase sensitivity to viruses. Conversely, silencing IFIT3 and PLSCR1 genes in tumor cells can negatively affect the internalization of vesicular stomatitis and Newcastle disease viruses. We present evidence of a complex relationship between the interferon response genes and other factors affecting the sensitivity of tumor cells to viruses.
The identification of genetically encoded variants at the proteome level is an important problem in cancer proteogenomics. The generation of customized protein databases from DNA or RNA sequencing data is a crucial stage of the identification workflow. Genomic data filtering applied at this stage may significantly modify variant search results, yet its effect is generally left out of the scope of proteogenomic studies. In this work, we focused on this impact using data of exome sequencing and LC-MS/MS analyses of six replicates for eight melanoma cell lines processed by a proteogenomics workflow. The main objectives were identifying variant peptides and revealing the role of the genomic data filtering in the variant identification. A series of six confidence thresholds for single nucleotide polymorphisms and indels from the exome data were applied to generate customized sequence databases of different stringency. In the searches against unfiltered databases, between 100 and 160 variant peptides were identified for each of the cell lines using X!Tandem and MS-GF+ search engines. The recovery rate for variant peptides was ∼1%, which is approximately three times lower than that of the wild-type peptides. Using unfiltered genomic databases for variant searches resulted in higher sensitivity and selectivity of the proteogenomic workflow and positively affected the ability to distinguish the cell lines based on variant peptide signatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.