We characterise the stress singularity of the Oldroyd-B, Phan-Thien-Tanner (PTT), and Giesekus viscoelastic models in steady planar stick-slip flows. For both PTT and Giesekus models in the presence of a solvent viscosity, the asymptotics show that the velocity field is Newtonian dominated near to the singularity at the join of the stick and slip surfaces. Polymer stress boundary layers are present at both the stick and slip surfaces. By integrating along streamlines, we verify the polymer stress behavior of r 4/11 for PTT and r 5/16 for Giesekus, where r is the radial distance from the singularity. These asymptotic results for PTT and Giesekus do not hold in the limit of vanishing quadratic stress terms for Oldroyd-B. However, we can consider the Oldroyd-B model in the fixed kinematics of a prescribed Newtonian velocity field. In contrast to PTT and Giesekus, this is not the correct balance for the momentum equation but does allow insight into the behavior of the Oldroyd-B equations near the singularity. A three-region asymptotic structure is again apparent with now a polymer stress singularity of r 4/5. The high Weissenberg boundary layer equations are found to manifest themselves at the stick surface and are of thickness r 3/2. At the slip surface, dominant balance between the upper convected stress and rate-of-strain terms gives a slip boundary layer of thickness r 2. The solution of the slip boundary layer shows that the polymer stress is now singular along the slip surface. These results are supported through numerical integration along streamlines of the Oldroyd-B equations in a Newtonian velocity field. The Oldroyd-B model thus extends the point singularity at the join of the stick and slip surfaces to the whole of slip surface. As such, it does not have a physically meaningful solution in a Newtonian velocity field. We would expect a similar stress behavior for this model in the true viscoelastic velocity field.
Stick-slip flow is a challenging viscoelastic benchmark problem due to the presence of a separation or transition point at the die exit where a sudden change in flow boundary conditions occurs. We present numerical simulations of transient planar stick-slip flow of the Phan-Thien-Tanner (PTT) and Giesekus fluids, investigating the polymer stress behavior around the stress singularity at the stick-slip point, confirming the asymptotic results presented by Evans et al. ["Stresses of the Oldroyd-B, PTT and Giesekus fluids in a Newtonian velocity field near the stickslip singularity," Phys. Fluids 29, 1-33 (2017)]. In order to improve the numerical knowledge about this viscoelastic benchmark problem, two distinct mathematical methodologies are used for comparison in the computational simulations: the Cartesian and natural stress formulations. The former is widely applied in computational rheology, while the latter is used for the first time in the context of this problem. The natural stress formulation gives improved convergence results both temporally and spatially near to the singularity while maintaining the same global flow characteristics as the Cartesian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.