Abstract. Biomass burning is a major source of atmospheric brown carbon (BrC), and through its absorption of UV/VIS radiation, it can play an important role in the planetary radiative balance and atmospheric photochemistry. The considerable uncertainty of BrC impacts is associated with its poorly constrained sources, transformations, and atmospheric lifetime. Here we report laboratory experiments that examined changes in the optical properties of the water-soluble (WS) BrC fraction of laboratory-generated biomass burning particles from hardwood pyrolysis. Effects of direct UVB photolysis and OH oxidation in the aqueous phase on molecular-weight-separated BrC were studied. Results indicated that the majority of low-molecular-weight (MW) BrC (<400 Da) was rapidly photobleached by both direct photolysis and OH oxidation on an atmospheric timescale of approximately 1 h. High MW BrC (≥400 Da) underwent initial photoenhancement up to ∼15 h, followed by slow photobleaching over ∼10 h. The laboratory experiments were supported by observations from ambient BrC samples that were collected during the fire seasons in Greece. These samples, containing freshly emitted to aged biomass burning aerosol, were analyzed for both water- and methanol-soluble BrC. Consistent with the laboratory experiments, high-MW BrC dominated the total light absorption at 365 nm for both methanol and water-soluble fractions of ambient samples with atmospheric transport times of 1 to 68 h. These ambient observations indicate that overall, biomass burning BrC across all molecular weights has an atmospheric lifetime of 15 to 28 h, consistent with estimates from previous field studies – although the BrC associated with the high-MW fraction remains relatively stable and is responsible for light absorption properties of BrC throughout most of its atmospheric lifetime. For ambient samples of aged (>10 h) biomass burning emissions, poor linear correlations were found between light absorptivity and levoglucosan, consistent with other studies suggesting a short atmospheric lifetime for levoglucosan. However, a much stronger correlation between light absorptivity and total hydrous sugars was observed, suggesting that they may serve as more robust tracers for aged biomass burning emissions. Overall, the results from this study suggest that robust model estimates of BrC radiative impacts require consideration of the atmospheric aging of BrC and the stability of high-MW BrC.
Oxidative potential (OP), which is the ability of certain components in atmospheric particles to generate reactive oxidative species (ROS) and deplete antioxidants in vivo, is a prevailing toxicological mechanism underlying the adverse health effects associated with exposure to ambient aerosols. While previous studies have identified the high OP of fresh biomass burning organic aerosols (BBOA), it remains unclear how it evolves throughout atmospheric transport. Using the dithiothreitol (DTT) assay as a measure of OP, a combination of field observations and laboratory experiments is used to determine how atmospheric aging transforms the intrinsic OP (OPmass DTT) of BBOA. For ambient BBOA collected during the fire seasons in Greece, OPmass DTT was observed to increase by a factor of 2.1 ± 0.9 for samples of atmospheric ages up to 68 h. Laboratory experiments indicate that aqueous photochemical aging (aging by UVB and UVA photolysis; as well as OH oxidation), as well as aging by ozone and atmospheric dilution can transform the OPmass DTT of the water-soluble fraction of wood smoke within 2 days of atmospheric transport. The results from this work suggest that the air quality impacts of biomass burning emissions can extend beyond regions near fire sites and should be accounted for.
<p><strong>Abstract.</strong> Biomass burning is a major source of atmospheric brown carbon (BrC) and through its absorption of UV/VIS radiation, it can play an important role on the planetary radiative balance and atmospheric photochemistry. The considerable uncertainty of BrC impacts is associated with its poorly constrained sources, transformations and atmospheric lifetime. Here we report laboratory experiments that examined changes in the optical properties of the water-soluble BrC fraction of biomass burning particles. Effects of direct UVB photolysis and OH oxidation in the aqueous phase on molecular weight-separated BrC were studied. Results indicated that low molecular weight (MW) BrC (<&#8201;400&#8201;Da) was rapidly photobleached by both direct photolysis and OH oxidation on an atmospheric timescale of approximately 1 hour. High MW BrC (&#8805;&#8201;400&#8201;Da) underwent initial photoenhancement over a few hours, followed by slow photobleaching over ~&#8201;ten hours. The laboratory experiments were supported by observations from ambient BrC samples that were collected during the fire seasons in Greece. These samples, containing freshly emitted to aged biomass burning aerosol, were analyzed for both water and methanol soluble BrC. Consistent with the laboratory experiments, high MW BrC dominated the total light absorption at 365&#8201;nm for both methanol and water-soluble fractions of ambient samples with atmospheric transport times of 1 to 68 hours. These ambient observations indicate that overall, biomass burning BrC across all molecular weights have an atmospheric lifetime of 15 to 20 hours, consistent with estimates from previous field studies &#8211; although the BrC associated with the high MW fraction remains relatively stable and is responsible for light absorption properties of BrC throughout most of its atmospheric lifetime. For ambient samples of aged (>&#8201;10 hours) biomass burning emissions, poor linear correlations were found between light absorptivity and levoglucosan, consistent with other studies suggesting a short atmospheric lifetime for levoglucosan. However, a much stronger correlation between light absorptivity and total hydrous sugars was observed, suggesting that they may serve as more robust tracers for aged biomass burning emissions. Overall, the results from this study suggest that robust model estimates of BrC radiative impacts require consideration of the atmospheric aging of BrC and the stability of high-MW BrC.</p>
Abstract. Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants in fine particulate matter (PM) long known to have mutagenic and carcinogenic effects, but much is unknown about the importance of local and remote sources for PAH levels observed in population-dense urban environments. A year-long sampling campaign in Athens, Greece, where more than 150 samples were analyzed for 31 PAHs and a wide range of chemical markers, was combined with positive matrix factorization (PMF) to constrain the temporal variability, sources, and carcinogenic risk associated with PAHs. It was found that biomass burning (BB), a source mostly present during wintertime intense pollution events (observed for 18 % of measurement days in 2017), led to wintertime PAH levels that were 7 times higher than in other seasons and was as important for annual mean PAH concentrations (31 %) as diesel and oil (33 %) and gasoline (29 %) sources. The contribution of non-local sources, although limited on an annual basis (7 %), increased during summer, becoming comparable to that of local sources combined. The fraction of PAHs (12 members that were included in the PMF analysis) that was associated with BB was also linked to increased health risk compared to the other sources, accounting for almost half the annual PAH carcinogenic potential (43 %). This can result in a large number of excess cancer cases due to BB-related high PM levels and urges immediate action to reduce residential BB emissions in urban areas facing similar issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.