The aim of this paper is to prove the hypercontractive propertie of the Dunkl-OrnsteinUhlenbeck semigroup, {e (tL k ) } t≥0 . To this end, we prove that the Dunkl-OrnsteinUhlenbeck differential operator L k with k ≥ 0 and associated to the Z d 2 group, satisfies a curvature-dimension inequality, to be precise, a C(ρ, ∞)-inequality, with 0 ≤ ρ ≤ 1. As an application of this fact, we get a version of Meyer's multipliers theorem and by means of this theorem and fractional derivatives, we obtain a characterization of Dunkl-potential spaces.
RESUMENEl objetivo de este artículo es demostrar la propiedad hipercontractiva del semigrupo de Dunkl-Ornstein-Uhlenbeck, {e (tL k ) } t≥0 . Para lograr esto, probamos que el operador2 , satisface una desigualdad de curvatura-dimensión, para ser precisos, una C(ρ, ∞)-desigualdad, con 0 ≤ ρ ≤ 1. Como una aplicación de este hecho, obtenemos una versión del teorema de multiplicadores de Meyer y a través de este teorema y derivadas fraccionales, obtenemos una caracterización de espacios Dunkl-potenciales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.