The aim of this paper is to introduce some operators induced by the Jacobi differential operator and associated with the Jacobi semigroup, where the Jacobi measure is considered in the multidimensional case.In this context, we introduce potential operators, fractional integrals, fractional derivates, Bessel potentials and give a version of Carleson measures.We establish a version of Meyer's multiplier theorem and by means of this theorem, we study fractional integrals and fractional derivates.Potential spaces related to Jacobi expansions are introduced and using fractional derivates, we give a characterization of these spaces. A version of Calderon's Reproduction Formula and a version of Fefferman's theorem are given.Finally, we present a definition of Triebel-Lizorkin spaces and Besov spaces in the Jacobi setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.