The consequences of a hepatitis A virus (HAV) infection on cell-based antiviral responses and the interactions between virus and host cells resulting in persistent infections are poorly understood. In this report, we show that HAV does inhibit double-stranded (dsRNA)-induced beta interferon (IFN-) gene expression by influencing the IFN- enhanceosome, as well as dsRNA-induced apoptosis, which suggests that both effects may be connected by shared viral and/or cellular factors. This ability of HAV, which preserves the sites of virus production for a longer time, may allow the virus to establish an infection and may be the presupposition for setting up persistent infections. Our results suggest that the inhibitory effect of HAV on the cellular defense mechanisms might not be sufficient to completely prevent the antiviral reactions, which may be induced by accumulating viral dsRNA, at a later stage of infection. However, HAV seems to counteract this situation by downregulation of viral replication and in the following production of viral dsRNA. This ability of noncytopathogenic HAV acts dominantly on cytopathogenic HAV in trans. The downregulation might ensure the moderate replication which seems necessary for inhibition of the antiviral mechanisms by HAV and therefore for the persistent state of the HAV infection.
NF-κB is activated by hepatitis B virus and hepatitis C virus and is assumed to contribute to viral persistence, leading to the development of hepatocellular cancer by inhibition of apoptosis mediated by cytotoxic T cells. Whether hepatitis A virus (HAV), which does not cause chronic infection, activates NF-κB is a topic of controversy. Here, we confirm that HAV activates NF-κB and show that HAV enhances the activation of NF-κB by poly(I-C), but it inhibits the activation of NF-κB by Newcastle disease virus (NDV), a paramyxovirus. In addition, HAV inhibits NF-κB activation induced by overexpressed MAVS (mitochondrial antiviral signaling protein). We conclude from these findings that NF-κB induction occurs in cells infected with HAV by dsRNA, independently of mitochondrial-transduced RIG-I/MDA-5 signaling, whereas the induction of NF-κB in cells infected by NDV is mediated by RIG-I signaling, independenly of viral dsRNA. This is supported by experiments in which the different RNA inducers of RIG-I and MDA-5 are sequestered and which also show that poly(I-C) and HAV, but not NDV, are functionally equivalent in inducing NF-κB activity. Furthermore, we demonstrate that HAV interferes with the protein kinase R (PKR) activity and PKR activation induced by dsRNA, and that HAV-induced activation of NF-κB therefore does not take place via the PKR-induced pathway. As assumed for hepatitis B and C virus infections, NF-κB activation could attenuate the effects of cytotoxic T cells and may contribute to prolonged as well as relapsing courses of hepatitis A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.