Mild citrullinemia is an allelic variant of classical citrullinemia type I also caused by deficiency of the urea cycle enzyme argininosuccinate synthetase (ASS). Affected patients comprise a biochemical but no clinical phenotype. However, there is no reliable parameter allowing conclusions regarding the course of the disorder or its type of manifestation. The aim of this study was to test the importance of varying levels of ASS residual activities for the severity at diagnosis. Bacterial in vitro expression studies allowed the enzymatic analysis of purified wild-type and the mutant ASS proteins p.Ala118Thr (c.352G>A), p.Trp179Arg (c.535T>C), p.Val263Met (c.787G>A), p.Arg265Cys (c.793C>T), p.Met302Val (c.904A>G), p.Gly324Ser (c.970G>A), p.Gly362Val (c.1085G>T), and p.Gly390Arg (c.1168G>A). In the chosen system, classical mutations do not show any significant enzymatic activity, whereas mutations associated with a mild course yield significant ASS activity levels. The mutation p.Ala118Thr (c.352G>A) impresses by a high residual activity (62%) but a severe reduction of affinity toward the substrates citrulline and aspartate. This mutation was identified in a hitherto healthy female adult with no history of known citrullinemia who had died during the postpartum period from hyperammonemic coma. The results of this study suggest that even a high level of residual ASS activity is not a reliable prognostic marker for an uneventful clinical course. Determination of ASS residual activities, therefore, cannot help in anticipating the risk of metabolic derangement. This study should guide clinicians as well as patients with mild citrullinemia toward a lifelong awareness of the disorder.
Mitochondrial carnitine palmitoyltransferase II (CPT II) deficiency is the most common inherited disorder of lipid metabolism in adults. Currently the routine diagnosis is based on the determination of CPT enzyme activity in muscle tissue. We have analysed the tandem mass spectra of serum acylcarnitines of nine CPT II-deficient patients. These spectra were compared to those of a cohort of 99 patients with other neuromuscular disorders and metabolic conditions supposed to cause alterations of the long-chain acylcarnitines. The spectra in CPT II deficiency showed characteristic elevations of C16:0 and C18:1 acylcarnitines while acetylcarnitine C2 was not elevated. In the present study, the ratio (C16:0+C18:1)/C2 has detected all CPT II deficiencies and discriminated them from unspecific alterations of serum acylcarnitines. The ratios of CPT II-deficient patients showed virtually no overlap with those observed in patients with other neuromuscular disorders. We suggest mass spectrometry of serum acylcarnitines as a rapid screening test that should be included early in the diagnostic work-up of patients with recurrent myoglobinuria, recurrent muscular weakness and myalgia.
ABSTRACT:The ketogenic diet (KD) provides ketones from the degradation of free fatty acids for energy metabolism. It is a therapeutic option for pharmacoresistant epilepsies. Carnitine is the carrier molecule that transports fatty acids across the mitochondrial membrane for degradation into ketones. The integrity of this transport system is a prerequisite for an adequate ketogenic response. For monitoring of tissue metabolism with KD, we used the sampling method of s.c. microdialysis (MD), which permits minimally invasive, frequent, and extensive metabolic monitoring independent of blood tests. By using this new method, we monitored changes in carnitine metabolism induced by KD, particularly in free carnitine (C0), acetylcarnitine (C2), and hydroxybutyrylcarnitine (C4OH). Correlation of microdialysate and tissue concentrations for carnitines in vitro was about 85%. Carnitine metabolism was monitored in seven children started on a KD for pharmacoresistant epilepsy after a conventional initial fasting period. Detected metabolic changes consisted of a slight decrease in s.c. C0 and a marked increase in C2/CO and C4OH/CO levels. The levels of s.c. C4OH strongly correlate with -hydroxybutyrate (-OHB) levels in plasma providing an additional parameter for the carnitine reserve of the body and reflect an optimal ketogenic energy supply. Subcutaneous MD allows close and extensive monitoring of metabolism with a KD. A high-fat, low-carbohydrate KD has been proven to be efficient for intractable childhood epilepsies (1). The metabolic effects of the KD are comparable to prolonged fasting. Glucose substrates are replaced by -OHB, acetoacetate, and free fatty acids. Carnitine plays a major role in the degradation of fatty acids. As a trimethylated amino acid, it facilitates translocation of fatty acids into the mitochondrion and is therefore an essential cofactor in fatty acid oxidation and ketogenesis (2). In mammals, changes in the carnitine pattern in plasma and several tissues have been demonstrated with alterations in nutritional state. Studies in humans have shown a delayed decrease in plasma free carnitine and a rapid increase in long-and particularly short-chain acylcarnitines during fasting or diabetic ketosis (3)(4)(5). A study in children demonstrated that the changes in acylcarnitines during fat load (ingestion of sunflower oil) are more or less comparable to those during fasting (6). However, studies on the dynamics of carnitine metabolism, in particular C4OH, during initiation of a KD have not been reported so far.The technique of MD is a potent tool for the study of tissue metabolism. The method is based on the diffusion of substances through a semipermeable dialysis membrane implanted in the tissue of interest. It allows repeated measurement of the concentrations of tissue molecules that have crossed the membrane. Water-soluble analytes with a molecular weight below the exclusion size of the catheter cross the membrane until their concentrations in the extracellular fluid and the microdialysate are equal ...
Argininosuccinate lyase (ASL) deficiency (McKusick 207900) is an inborn error of the urea cycle. The leading symptom is progressive hyperammonaemia, which is a life-threatening condition, particularly in patients with a neonatal onset. Early diagnosis and treatment of the hyperammonaemia are necessary to improve survival and the long-term outcome of ASL-deficient patients. Currently, the diagnosis of ASL deficiency is based on the measurement of urea cycle intermediates and amino acids by automated quantitative ion exchange chromatography in plasma and urine. Here, we report a newborn presenting with coma and severe hyperammonaemia. ASL deficiency was suspected on the basis of an adapted tandem mass spectrometric (MS-MS) procedure which allows determination of argininosuccinate in addition to the amino acids in serum samples. MS-MS measurements revealed a characteristic increase of argininosuccinate, a moderate increase of citrulline, and lowered levels of arginine and ornithine in the serum of the patient. The diagnosis was confirmed by the detection of a novel homozygous frameshift mutation in exon 14 of the argininosuccinate lyase gene. We propose MS-MS as a diagnostic tool suitable for the rapid detection of specific alterations in the amino acid spectra caused by ASL deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.