To date, the copper complex with the tris(2-pyridylmethyl)amine ( tmpa ) ligand ( Cu - tmpa ) catalyzes the ORR with the highest reported turnover frequency (TOF) for any molecular copper catalyst. To gain insight into the importance of the tetradentate nature and high flexibility of the tmpa ligand for efficient four-electron ORR catalysis, the redox and electrocatalytic ORR behavior of the copper complexes of 2,2′:6′,2″-terpyridine ( terpy ) and bis(2-pyridylmethyl)amine ( bmpa ) ( Cu - terpy and Cu - bmpa , respectively) were investigated in the present study. With a combination of cyclic voltammetry and rotating ring disk electrode measurements, we demonstrate that the presence of the terpy and bmpa ligands results in a decrease in catalytic ORR activity and an increase in Faradaic efficiency for H 2 O 2 production. The lower catalytic activity is shown to be the result of a stabilization of the Cu I state of the complex compared to the earlier reported Cu - tmpa catalyst. This stabilization is most likely caused by the lower electron donating character of the tridentate terpy and bmpa ligands compared to the tetradentate tmpa ligand. The Laviron plots of the redox behavior of Cu - terpy and Cu - bmpa indicated that the formation of the ORR active catalyst involves relatively slow electron transfer kinetics which is caused by the inability of Cu - terpy and Cu - bmpa to form the preferred tetrahedral coordination geometry for a Cu I complex easily. Our study illustrates that both the tetradentate nature of the tmpa ligand and the ability of Cu - tmpa to form the preferred tetrahedral coordination geometry for a Cu I complex are of utmost importance for ORR catalysis with very high catalytic rates.
As it connects to a large set of important fundamental ideas in chemistry and analytical techniques discussed in high school chemistry curricula, we review the exploding flask demonstration. In this demonstration, methanol vapor is catalytically oxidized by a Pt wire catalyst in an open container. The exothermicity of reactions occurring at the catalytic surface heats the metal to the extent that it glows. When restricting reactant and product gas flow, conditions may favor repetitive occurrence of a small explosion. We show how mass spectrometry and infrared spectroscopy allow for unravelling the chemical background of this demonstration and discuss various ideas on how to use it in a classroom setting to engage students’ critical thinking about chemical research. Along the way, we show that two commonly published ideas about the chemical background of this demonstration are incorrect, and we suggest simple tests that may be performed in a high school setting either as an addition to the demonstration or as a student research project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.