Purpose: Total neoadjuvant treatment (TNT) is a valid strategy for patients with high-risk locally advanced rectal cancer (LARC). Biomarkers of response to TNT are an unmet clinical need. We aimed to determine the value of circulating tumor DNA (ctDNA) to predict tumor response, recurrence, and survival in patients with LARC treated with TNT. Experimental Design: The GEMCAD 1402 was a phase II randomized, multicentric clinical trial that randomized 180 patients with LARC to modified schedule of fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) +/− aflibercept, followed by chemoradiation and surgery. Plasma samples were collected at baseline and after TNT within 48 hours before surgery (presurgery). An ultrasensitive assay that integrates genomic and epigenomic cancer signatures was used to assess ctDNA status. ctDNA results were correlated with variables of local tumor response in the surgery sample, local/systemic recurrence, and survival. Results: A total of 144 paired plasma samples from 72 patients were included. ctDNA was detectable in 83% of patients at baseline and in 15% following TNT (presurgery). No association was found between ctDNA status and pathologic response. Detectable presurgery ctDNA was significantly associated with systemic recurrence, shorter disease-free survival (HR, 4; P = 0.033), and shorter overall survival (HR, 23; P < 0.0001). Conclusions: In patients with LARC treated with TNT, presurgery ctDNA detected minimal metastatic disease identifying patients at high risk of distant recurrence and death. This study sets the basis for prospective clinical trials that use liquid biopsy to personalize the therapeutic approach following TNT.
BRAF V600 mutations have been found in 1–2% of non-small-cell lung cancer (NSCLC) patients, with Food and Drug Administration (FDA) approved treatment of dabrafenib plus trametinib and progression free survival (PFS) of 10.9 months. However, 50–80% of BRAF mutations in lung cancer are non-V600, and can be class II, with intermediate to high kinase activity and RAS independence, or class III, with impaired kinase activity, upstream signaling dependence, and consequently, sensitivity to receptor tyrosine kinase (RTK) inhibitors. Plasma cell-free DNA (cfDNA) of 185 newly diagnosed advanced lung adenocarcinoma patients (Spanish Lung Liquid versus Invasive Biopsy Program, SLLIP, NCT03248089) was examined for BRAF and other alterations with a targeted cfDNA next-generation sequencing (NGS) assay (Guardant360®, Guardant Health Inc., CA, USA), and results were correlated with patient outcome. Cell viability with single or combined RAF, MEK, and SHP2 inhibitors was assessed in cell lines with BRAF class I, II, and III mutations. Out of 185 patients, 22 had BRAF alterations (12%) of which seven patients harbored amplifications (32%) and 17 had BRAF mutations (77%). Of the BRAF mutations, four out of 22 (18%) were V600E and 18/22 (82%) were non-V600. In vitro results confirmed sensitivity of class III and resistance of class I and II BRAF mutations, and BRAF wild type cells to SHP2 inhibition. Concomitant MEK or RAF and SHP2 inhibition showed synergistic effects, especially in the class III BRAF-mutant cell line. Our study indicates that the class of the BRAF mutation may have clinical implications and therefore should be defined in the clinical practice and used to guide therapeutic decisions.
The genomics of advanced breast cancer (ABC) has been described through tumour tissue biopsy sequencing, although these approaches are limited by geographical and temporal heterogeneity. Here we use plasma circulating tumour DNA sequencing to interrogate the genomic profile of ABC in 800 patients in the plasmaMATCH trial. We demonstrate diverse subclonal resistance mutations, including enrichment of HER2 mutations in HER2 positive disease, co-occurring ESR1 and MAP kinase pathway mutations in HR + HER2− disease that associate with poor overall survival (p = 0.0092), and multiple PIK3CA mutations in HR + disease that associate with short progression free survival on fulvestrant (p = 0.0036). The fraction of cancer with a mutation, the clonal dominance of a mutation, varied between genes, and within hotspot mutations of ESR1 and PIK3CA. In ER-positive breast cancer subclonal mutations were enriched in an APOBEC mutational signature, with second hit PIK3CA mutations acquired subclonally and at sites characteristic of APOBEC mutagenesis. This study utilises circulating tumour DNA analysis in a large clinical trial to demonstrate the subclonal diversification of pre-treated advanced breast cancer, identifying distinct mutational processes in advanced ER-positive breast cancer, and novel therapeutic opportunities.
Purpose Treatment guidelines for advanced non–small-cell lung cancer (aNSCLC) recommend broad molecular profiling for targeted therapy selection. This study prospectively assessed comprehensive next-generation sequencing (NGS) of cell-free circulating tumor DNA (cfDNA) compared with standard-of-care (SOC) tissue-based testing to identify guideline-recommended alterations in aNSCLC. PATIENTS AND METHODS Patients with treatment-naïve aNSCLC were tested using a well-validated NGS cfDNA panel, and results were compared with SOC tissue testing. The primary objective was noninferiority of cfDNA vs. tissue analysis for the detection of two guideline-recommended biomarkers ( EGFR and ALK) and an additional six actionable biomarkers. Secondary analyses included tissue versus cfDNA biomarker discovery, overall response rate (ORR), progression-free survival (PFS) to targeted therapy, and positive predictive value (PPV) of cfDNA. RESULTS The primary objective was met with cfDNA identifying actionable mutations in 46 patients versus 48 by tissue ( P < .05). In total, 0/186 patients were genotyped for all eight biomarkers with tissue, compared with 90.8% using cfDNA. Targetable alterations or KRAS were identified in 80.7% when cfDNA was used first versus 57.1% when tissue was used first. PPV for cfDNA-detected EGFR was 100.0% (25/25). ORR and PFS in patients receiving targeted therapy based on tissue or cfDNA were similar to those previously reported. Conclusion This prospective study confirms a previous report that comprehensive cfDNA testing is noninferior to SOC tissue testing in detecting aNSCLC-recommended biomarkers. Furthermore, cfDNA-based first-line therapy produced outcomes similar to tissue-based testing, demonstrating the clinical utility of comprehensive cfDNA genotyping as the initial genotyping modality in patients with treatment-naïve aNSCLC when tissue is insufficient or when all actionable biomarkers cannot be rapidly assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.