Tissue engineering with three-dimensional biomaterials represents a promising approach for developing hepatic tissue to replace the function of a failing liver. Herein, we address cell seeding and distribution within porous alginate scaffolds, which represent a new type of porous biomaterial for tissue engineering. The hydrophilic nature of the alginate scaffold as well as its pore structure and interconnectivity enabled the efficient seeding of hepatocytes into the scaffolds, that is, 70-90% of the initial cells depending on the seeding method. Utilization of centrifugal force during seeding enhanced cell distribution in the porous scaffolds, consequently enabling the seeding of concentrated cell suspensions (>1 x 10(7) cells/mL). Cell density in scaffolds affected hepatocyte viability as judged by MTT assay. At a cell density of 0.28 x 10(6) cells/cm3 scaffold, the number of viable hepatocytes decreased to 33% of its initial value within 7 days, whereas at the denser cultures, 5.7 x 10(6) cells/cm3 scaffold and higher, the cells maintained higher viability while forming a network of connecting spheroids. In the high-density cellular constructs, hepatocellular functions such as albumin and urea secretion, and detoxification (cytochrome P-450 and phase II conjugating enzyme activities), remained high during the 7-day culture. Collectively, the results of the present study highlight the importance of cell density on the hepatocellular functions of three-dimensional hepatocyte constructs as well as the advantages of alginate matrices as scaffoldings.
Hepatocyte transplantation within porous scaffolds (HT) is being explored as a treatment strategy for end-stage liver diseases and enzyme deficiencies. One of the main issues in this approach is the limited viability of transplanted cells because vascularization of the scaffold site is either too slow or insufficient. We now address this by enhancing scaffold vascularization before cell transplantation via sustained delivery of vascular endothelial growth factor (VEGF), and by examining the liver lobes as a platform for transplanting donor hepatocytes in close proximity to the host liver. The vascularization kinetics of unseeded VEGF-releasing scaffolds on rat liver lobes were evaluated by analyzing the microvascular density and tissue ingrowth in implants harvested on days 3, 7, and 14 postimplantation. Capillary density was greater at all times in VEGF-releasing scaffolds than in the control scaffold without VEGF supplementation; on day 14, it was 220 +/- 33 versus 139 +/- 23 capillaries/mm2 (p < 0.05). Furthermore, 35% of the newly formed capillaries in VEGF-releasing scaffolds were larger than 16 microm in diameter, whereas in control scaffolds only 10% exceeded this size. VEGF had no effect on tissue ingrowth into the scaffolds. HT onto the implanted VEGF-releasing or control scaffolds was performed after 1 week of prevascularization on the liver lobe in Lewis rats. Fifty implants were harvested on days 1, 3, 7, and 12 and the area of viable hepatocytes was evaluated. The enhanced vascularization improved hepatocyte engraftment; 12 days after HT, the intact hepatocyte area (136,910 microm2/cross-section) in VEGF-releasing scaffolds was 4.6 higher than in the control group. This study shows that sustained local delivery of VEGF induced vascularization of porous scaffolds implanted on liver lobes and improved hepatocyte engraftment.
We investigated a novel method for the selective separation of beta-carotene isomers from a freeze-dried powder of the algae Dunaliella bardawil using supercritical fluid extraction. The separation method relies on the different dissolution rate of the 9Z and all-E isomers of beta-carotene in SC-CO(2). At first, the equilibrium solubility of the two isomers in SC-CO(2) was determined at the extraction conditions of 44.8 MPa and 40 degrees C. The solubility of the 9Z isomer was found to be nearly 4 times higher than that of the all-E isomer (1.92 x 10(-5) g all-E isomer/g CO(2) compared to 7.64 x 10(-5) g 9Z isomer/g CO(2)). When supercritical fluid extraction was applied to a carotenoid concentrate from the algae (29 wt% beta-carotene) or a freeze-dried powder of the algae (3.1% beta-carotene), a selective separation of the 9Z/all-E isomers of beta-carotene was obtained. Thirty-nine percent recovery of beta-carotene with 80% purity of 9Z isomer was achieved at the initial stages of extraction (40 mL CO(2)). The extraction rate of beta-carotene from the freeze-dried algae powder was slower than that from the carotenoid concentrate, resulting in a reduction in the recovery and purity of the 9Z isomer. This indicates that even at the initial stage of the extraction the internal mass resistance is significant. Isomer purity and recovery could be enhanced upon grinding of the algae powder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.