Changes in products, markets and technologies influence the development process and its approaches. The V-Model of the VDI 2206 from 2004 is an important basis for the industrial application of mechatronic product development. This paper shows which changes need to be integrated into the updated V-Model and in which areas the focused topics have to be changed to be prepared for future challenges. For this purpose, existing applied models are analyzed and the need for rework is elaborated.
Requirement changes and cascading effects of change propagation are major sources of inefficiencies in product development and increase the risk of project failure. Risk management regarding these requirement changes yields the potential to handle such changes efficiently. Currently unlocked, a systematic approach is required for risk management to assess the risk of a requirement change with appropriate effort in industrial application. Within the paper at hand, a novel method for systematic assessment of requirement change risk is presented. It is developed in a multiple case study approach with three product development projects from different industrial branches. The change risk is assessed by combining change likelihood and change impact. Propagation effects are considered by analyzing requirement interrelations. To limit application effort, a tailorable approach towards assessment of change causes based on generalized influence factors and a pre-defined rule set for semi-automatized assessment of requirements interrelations is used. A software prototype is developed and implemented to enable evaluation and transfer to industrial application. The approach is evaluated using a combination of case study projects, stakeholder workshops, questionnaires and semi-structured interviews. Applying the method, the risks of requirement changes are assessed systematically, and subsequent risk management is enabled. The contribution at hand opens up the research space of risk management in handling requirement changes which is currently almost unexploited. At the same time, it enables more efficient product development.
This contribution includes the development and validation of a Virtual Reality (VR) supported creativity technique: “Sensory Stimulus Environment Technique”. Key elements of this technique are the creativity process, a VR tool and the support of the tool (Virtual Creative Environments). The creativity process consists of phases for individual and group-based work. The VR tool “Virtual Creativity” includes functions to support the preparation of Virtual Creative Environments (VCE), the generation and evaluation of new ideas. For the generation of VCE, the tool possesses an environment configurator. Users of this function are supported by Design Rules for VCE.For the validation of the creativity technique, it was used in a product engineering project. The project members procedure two phases of the creativity process (Preparation and Individual Idea Generation) and used “Virtual Creativity” to generate VCEs and ideas to solve their tasks. By questionnaires, functions of “Virtual Creativity” were assessed for generating VCEs and ideas.
Changing requirements have a broad impact on product development processes. In this paper, a novel approach towards structuring requirements is proposed. Based on a requirements list, interrelations of requirements are assessed semi-automatically by a rule basis. Here, generic interrelations funded on either physical fundamentals or working principles are recorded. By this approach, requirements structure matrices are derived semi-automatically. Combined with selecting critical requirements based on structured criterions, iterations due to changing requirements will be reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.