Graphical systems models are powerful tools that can help facilitate hypothesis-driven ecotoxicogenomic research and aid in mechanistic interpretation of results. This paper describes a novel graphical model of the teleost brain-pituitary-gonadal (BPG) axis designed for ecotoxicogenomics research on endocrine-disrupting chemicals using small fish models. The model incorporates six compartments representing the major organs involved in the fish reproductive axis and depicts the interactions of over 105 proteins and 40 simple molecules, transcriptional regulation of 25 genes, and over 300 different reactions/ processes. Application of the model is illustrated in the context of a study examining effects of the competitive aromatase inhibitor, fadrozole, on gene expression in gonad, brain, and liver tissue of fathead minnows. Changes in mRNA transcript abundance were measured using a fathead minnow oligonucleotide microarray and quantitative real-time polymerase chain reaction. Gene expression changes observed in the ovaries of females exposed to 6.3 microg fadrozole/L for7 d were functionally consistent with fadrozole's mechanism of action, and expected compensatory responses of the BPG axis to fadrozole's effects. Furthermore, microarray results helped identify additional elements (genes/ proteins) that could be included in the model to potentially increase its predictive capacity. With proper recognition of
This study evaluated changes in the expression of steroidogenesis-related genes in male fathead minnows exposed to ketoconazole (KTC) or vinclozolin (VZ) for 21 days. The aim was to evaluate links between molecular changes and higher level outcomes after exposure to endocrine-active chemicals (EACs) with different modes of action. To aid our analysis and interpretation of EAC-related effects, we first examined variation in the relative abundance of steroidogenesis-related gene transcripts in the gonads of male and female fathead minnows as a function of age, gonad development, and spawning status, independent of EAC exposure. Gonadal expression of several genes varied with age and/or gonadal somatic index in either males or females. However, with the exception of aromatase, steroidogenesis-related gene expression did not vary with spawning status. Following the baseline experiments, expression of the selected genes in male fathead minnows exposed to KTC or VZ was evaluated in the context of effects observed at higher levels of organization. Exposure to KTC elicited changes in gene transcription that were consistent with an apparent compensatory response to the chemical's anticipated direct inhibition of steroidogenic enzyme activity. Exposure to VZ, an antiandrogen expected to indirectly impact steroidogenesis, increased pituitary expression of follicle-stimulating hormone beta-subunit as well as testis expression of 20beta-hydroxysteroid dehydrogenase and luteinizing hormone receptor transcripts. Results of this study contribute to ongoing research aimed at understanding responses of the teleost hypothalamic-pituitary-gonadal axis to different types of EACs and how changes in molecular endpoints translate into apical outcomes reflective of either adverse effect or compensation.
Gene microarrays provide the field of ecotoxicology new tools to identify mechanisms of action of chemicals and chemical mixtures. Herein we describe the development and application of a 2,000-gene oligonucleotide microarray for the fathead minnow Pimephales promelas, a species commonly used in ecological risk assessments in North America. The microarrays were developed from various cDNA and subtraction libraries that we constructed. Consistency and reproducibility of the microarrays were documented by examining multiple technical replicates. To test application of the fathead minnow microarrays, gene expression profiles of fish exposed to 17beta-estradiol, a well-characterized estrogen receptor (ER) agonist, were examined. For these experiments, adult male fathead minnows were exposed for 24 h to waterborne 17beta-estradiol (40 or 100 ng/L) in a flow-through system, and gene expression in liver samples was characterized. Seventy-one genes were identified as differentially regulated by estradiol exposure. Examination of the gene ontology designations of these genes revealed patterns consistent with estradiol's expected mechanisms of action and also provided novel insights as to molecular effects of the estrogen. Our studies indicate the feasibility and utility of microarrays as a basis for understanding biological responses to chemical exposure in a model ecotoxicology test species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.