The presence of the biologically uncommon D-aspartic acid (D-aspartate) in human brain white matter has been previously reported. The earlier study has now been expanded to include D/L-aspartate ratios from 67 normal brains. The data show that the D-aspartate content increases rapidly from 1 year to approximately 35 years of age, levels off in middle age, and then appears to decrease somewhat. The D-aspartate content in gray matter remains at a consistently low level (half of that found in white matter) throughout the human life span. Within the limitations of current analytical methods, there was no detectable difference in D/L-aspartate ratios in white and gray matter of brains with Alzheimer's disease and several other pathologies when compared with brains of normal subjects. However, the presence of a significant D-aspartate level in white matter during the adult life span may lead to changes in protein configuration related to dysfunctions associated with the aging brain.
Normal protein-bound L-aspartyl/L-asparaginyl residues may undergo post-translational modification by racemization to D-aspartate, or by isomerization to the L-isoaspartyl form in which the peptide chain links through the beta carboxyl group of the residue. Based on preliminary results reported here, proteins associated with Alzheimer neurofibrillary tangle preparations contain a significantly greater number of these modified aspartyl residues than the unaffected proteins from the surrounding gray matter or in comparable preparations from normal brains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.