This paper introduces the implementation of a computational agent-based financial market model in which the system is described on both microscopic and macroscopic levels. This artificial financial market model is used to study the system response when a shock occurs. Indeed, when a market experiences perturbations, financial systems behavior can exhibit two different properties: resilience and robustness. Through simulations and different scenarios of market shocks, these system properties are studied. The results notably show that the emergence of collective herding behavior when market shock occurs leads to a temporary disruption of the system self-organization. Numerical simulations highlight that the market can absorb strong mono-shocks but can also be led to rupture by low but repeated perturbations.
Multiagent systems (MAS) provide a useful tool for exploring the complex dynamics and behavior of financial markets and now MAS approach has been widely implemented and documented in the empirical literature. This paper introduces the implementation of an innovative multi-scale mathematical model for a computational agent-based financial market. The paper develops a method to quantify the degree of self-organization which emerges in the system and shows that the capacity of self-organization is maximized when the agent behaviors are heterogeneous. Numerical results are presented and analyzed, showing how the global market behavior emerges from specific individual behavior interactions.
This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.