The main purpose of this paper is to introduce and study the notion of F -maximal F -plurisubharmonic functions, which extends the notion of maximal plurisubharmonic functions on a Euclidean domain to an F -domain of C n in a natural way. Our main result is that a finite Fplurisubharmonic function u on a plurifine domain U satisfies (dd c u) n = 0 if and only if u is F -locally F -maximal outside some pluripolar set. In particular, a finite F -maximal plurisubharmonic function u satisfies (dd c u) n = 0.
We investigate the existence of wandering Fatou components for polynomial skew-products in two complex variables. In 2004, the non-existence of wandering domains near a super-attracting invariant fiber was shown in Lilov (Fatou theory in two dimensions, PhD thesis, University of Michigan, 2004). In 2014, it was shown in Astorg et al. (Ann Math, arXiv:1411.1188, 2014) that wandering domains can exist near a parabolic invariant fiber. In Peters and Vivas (Math Z, arXiv:1408.0498, 2014, the geometrically attracting case was studied, and we continue this study here. We prove the non-existence of wandering domains for subhyperbolic attracting skew-products; this class contains the maps studied in Peters and Vivas (Math Z, arXiv:1408.0498, 2014. Using expansion properties on the Julia set in the invariant fiber, we prove bounds on the rate of escape of critical orbits in almost all fibers. Our main tool in describing these critical orbits is a possibly singular linearization map of unstable manifolds.
Consider a holomorphic automorphism acting hyperbolically on an invariant compact set. It has been conjectured that the arising stable manifolds are all biholomorphic to Euclidean space. Such a stable manifold is always equivalent to the basin of a uniformly attracting sequence of maps. The equivalence of such a basin to Euclidean space has been shown under various additional assumptions. Recently, Majer and Abbondandolo achieved new results by non-autonomously conjugating to normal forms on larger and larger time intervals. We show here that their results can be improved by adapting these time intervals to the sequence of maps. Under the additional assumption that all maps have linear diagonal part, the adaptation is quite natural and quickly leads to significant improvements. We show how this construction can be emulated in the non-diagonal setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.