The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.
The Middle Eocene Climatic Optimum (MECO) is an~500 kyr interval of pronounced global warming from which the climate system recovered in <50 kyr. The deep-sea sedimentary record can provide valuable insight on the marine ecosystem response to this protracted global warming event and consequently on the ecological changes during this time. Here we present new benthic foraminiferal assemblage data from Ocean Drilling Program Site 1051 in the subtropical North Atlantic, spanning the MECO and post-MECO interval (41.1 to 39.5 Ma). We find little change in the species composition of benthic foraminiferal assemblages during the studied interval, suggesting that the rate of environmental change was gradual enough that these organisms were able to adapt. However, we identify two transient intervals associated with peak warming (higher-productivity interval (HPI)-1; 40.07-39.96 Ma) and shortly after the MECO (HPI-2; 39.68-39.55 Ma), where benthic foraminiferal accumulation rates increase by an order of magnitude. These HPIs at Site 1051 appear to coincide with intervals of strengthened productivity in the Tethys, Southern Ocean, and South Atlantic, and we suggest that an intensified hydrological cycle during the climatic warmth of the MECO was responsible for eutrophication of marine shelf and slope environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.