In the physiological state, there appears to be a regulatory link between endoplasmic reticulum (ER) Ca(2+) homoeostasis and the initiation of neuronal protein synthesis. Exposing neuronal cell cultures to thapsigargin (Tg), an irreversible inhibitor of sarcoplasmic/ER Ca(2+)-ATPase (SERCA), induced an almost complete suppression of protein synthesis, which recovered to approx. 60% of control 24 h after Tg exposure. This is an experimental model where the regulatory link between the initiation of protein synthesis and ER Ca(2+) homoeostasis recovers, despite an irreversible suppression of SERCA activity [Doutheil, Treiman, Oschlies and Paschen (1999) Cell Calcium 25, 419--428]. The model was used to investigate the relationship between transcription and translation of various stress genes that respond to conditions causing graded suppression of protein synthesis. Expression patterns revealed three groups of genes. The mRNA levels of genes responding to conditions of ER stress (grp78, grp94, gadd34 and gadd153) were increased up to 200-fold after Tg exposure, whereas those coding for ER-resident proteins (SERCA 2b and Bcl-2) were increased up to 6-fold in treated cultures, and those coding for cytoplasmic proteins (heat-shock protein 70 and p67) were increased only 2--4-fold. Analysis of translation of these mRNAs suggests an imbalance in the synthesis of apoptosis-inducing (GADD153) and tolerance-activating (GRP78 and Bcl-2) proteins after blocking of the ER Ca(2+) pump. The observation that the relationship between Tg-induced changes in mRNA and protein levels varied considerably for the various genes studied implies that translation of the respective transcripts is differently regulated under conditions causing graded suppression of global protein synthesis. Detailed analysis of the response of neuronal cells to transient disturbance of ER Ca(2+) homoeostasis may help to elucidate the mechanisms underlying neuronal cell injury in those neurological disorders in which an impairment of ER function is thought to contribute to the pathological process of deterioration.
In the physiological state, there appears to be a regulatory link between endoplasmic reticulum (ER) Ca2+ homoeostasis and the initiation of neuronal protein synthesis. Exposing neuronal cell cultures to thapsigargin (Tg), an irreversible inhibitor of sarcoplasmic/ER Ca2+-ATPase (SERCA), induced an almost complete suppression of protein synthesis, which recovered to approx. 60% of control 24h after Tg exposure. This is an experimental model where the regulatory link between the initiation of protein synthesis and ER Ca2+ homoeostasis recovers, despite an irreversible suppression of SERCA activity [Doutheil, Treiman, Oschlies and Paschen (1999) Cell Calcium 25, 419–428]. The model was used to investigate the relationship between transcription and translation of various stress genes that respond to conditions causing graded suppression of protein synthesis. Expression patterns revealed three groups of genes. The mRNA levels of genes responding to conditions of ER stress (grp78, grp94, gadd34 and gadd153) were increased up to 200-fold after Tg exposure, whereas those coding for ER-resident proteins (SERCA 2b and Bcl-2) were increased up to 6-fold in treated cultures, and those coding for cytoplasmic proteins (heat-shock protein 70 and p67) were increased only 2–4-fold. Analysis of translation of these mRNAs suggests an imbalance in the synthesis of apoptosis-inducing (GADD153) and tolerance-activating (GRP78 and Bcl-2) proteins after blocking of the ER Ca2+ pump. The observation that the relationship between Tg-induced changes in mRNA and protein levels varied considerably for the various genes studied implies that translation of the respective transcripts is differently regulated under conditions causing graded suppression of global protein synthesis. Detailed analysis of the response of neuronal cells to transient disturbance of ER Ca2+ homoeostasis may help to elucidate the mechanisms underlying neuronal cell injury in those neurological disorders in which an impairment of ER function is thought to contribute to the pathological process of deterioration.
Engagement of the BCR triggers signals that control affinity maturation, memory induction, differentiation, and various other physiological processes in B cells. In previous work, we showed that truncation of the cytoplasmic tail of membrane-bound Ig (mIg)E in vivo resulted in lower serum IgE levels, decreased numbers of IgE-secreting plasma cells, and the abrogation of specific secondary responses correlating with a defect in the selection of high-affinity Abs during the germinal center reaction. We concluded that the Ag receptor is necessary at all times during Ab responses not only for the maturation process, but also for the expansion of Ag-specific B cells. Based on these results, we asked whether the cytoplasmic tail of mIgE, or specific proteins binding the cytoplasmic tail in vivo commit a signal transduction accompanying the B cell along its differentiation process. In this study, we present the identification of HS1-associated protein X-1 as a novel protein interacting with the cytoplasmic tail of mIgE. ELISA, surface plasmon resonance analysis, and coimmunoprecipitation experiments confirmed the specific interaction in vitro. In functional assays, we clearly showed that HS1-associated protein X-1 expression levels influence the efficiency of BCR-mediated Ag internalization.
The reduced quantity and quality of serum immunoglobulins (sIgs) in mutant mice expressing truncated cytoplasmic tails of IgE and IgG1 indicate an active role for the cytoplasmic domains of mIgG1 and mIgE. We used phage display technology to identify candidate proteins able to interact with the cytoplasmic tail of mIgE. Using a murine cDNA B cell library displayed on the surface of phage as prey and the 28 amino acid long cytoplasmic tail of IgE as bait, we isolated phage encoding the murine hematopoietic progenitor kinase 1 (HPK1). Surface plasmon resonance analysis measurements confirmed affinity of HPK1 to the mIgE cytoplasmic tail and revealed association to other immunoglobulin isotypes as well. Immunoprecipitation experiments, using lysates from two B cell lines expressing nitrophenyl (NP) specific mIgE molecules showed co-precipitation of IgE and HPK1. The interaction of HPK1 with the cytoplasmic domains of membrane immunoglobulins indicate an active role of the tails as part of an isotype specific signal transduction, independent from the Iga/Igb heterodimers, and may represent a missing link to upstream regulatory elements of HPK1 activation.
Like all other immunoglobulins, IgE can be secreted into the blood or expressed as a membrane receptor on the surface of B lymphocytes. Secreted immunoglobulins trace the antigen and contribute to its destruction. Membrane immunoglobulins accompany the B cell along its differentiation pathway, regulating processes like the induction and maintenance of immunological memory and differentiation of plasma cells. The regulation of the expression of IgE is very complex. A lot of positive and negative regulators influence the synthesis of IgE. In previous publications, we were able to show that the membrane IgE (mIgE) antigen receptor itself controls the quantity and quality of serum IgE produced. However, the knowledge about the regulatory function of the antigen receptor on these processes is at best limited. In the present paper, we present the construction of a reporter mouse strain, which will help us to follow an mIgE-bearing B cell during the immune response more precisely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.