Objective: The current article discusses recent literature on perceptual processing in autism and aims to provide a critical review of existing theories of autistic perception and suggestions for future work. Method: We review findings detailing exteroceptive and interoceptive processing in autism and discuss their neurobiological basis as well as potential links and analogies between sensory domains. Results: Many atypicalities of autistic perception described in the literature can be explained either by weak neural synchronization or by atypical perceptual inference. Evidence for both mechanisms is found across the different sensory domains considered in this review. Conclusions: We argue that weak neural synchronization and atypical perceptual inference might be complementary neural mechanisms that describe the complex bottom-up and top-down differences of autistic perception, respectively. Future work should be sensitive to individual differences to determine if divergent patterns of sensory processing are observed within individuals, rather than looking for global changes at a group level. Determining whether divergent patterns of exteroceptive and interoceptive sensory processing may contribute to prototypical social and cognitive characteristics of autism may drive new directions in our conceptualization of autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.