Fertility preservation via biobanking of testicular tissue retrieved from testicular biopsies is now generally recommended for boys who need to undergo gonadotoxic treatment prior to the onset of puberty, as a source of spermatogonial stem cells (SSCs). SSCs have the potential of forming spermatids and may be used for therapeutic fertility approaches later in life. Although in the past 30 years many milestones have been reached to work towards SSC-based fertility restoration therapies, including transplantation of SSCs, grafting of testicular tissue and various in vitro and ex vivo spermatogenesis approaches, unfortunately, all these fertility therapies are still in a preclinical phase and not yet available for patients who have become infertile because of their treatment during childhood. Therefore, it is now time to take the preclinical research towards SSC-based therapy to the next level to resolve major issues that impede clinical implementation. This review gives an outline of the state of the art of the effectiveness and safety of fertility preservation and SSC-based therapies and addresses the hurdles that need to be taken for optimal progression towards actual clinical implementation of safe and effective SSC-based fertility treatments in the near future.
Background: Retrospective studies in adult survivors of childhood cancer show long-term impacts of exposure to alkylating chemotherapy on future fertility. We recently demonstrated germ cell loss in immature human testicular tissues following exposure to platinum-based chemotherapeutic drugs. This study investigated the effects of platinum-based chemotherapy exposure on the somatic Sertoli cell population in human fetal and pre-pubertal testicular tissues.Methods: Human fetal (n = 23; 14–22 gestational weeks) testicular tissue pieces were exposed to cisplatin (0.5 or 1.0 μg/ml) or vehicle for 24 h in vitro and analysed 24–240 h post-exposure or 12 weeks after xenografting. Human pre-pubertal (n = 10; 1–12 years) testicular tissue pieces were exposed to cisplatin (0.5 μg/ml), carboplatin (5 μg/ml) or vehicle for 24 h in vitro and analysed 24–240 h post-exposure; exposure to carboplatin at 10-times the concentration of cisplatin reflects the relative clinical doses given to patients. Immunohistochemistry was performed for SOX9 and anti-Müllerian hormone (AMH) expression and quantification was carried out to assess effects on Sertoli cell number and function respectively. AMH and inhibin B was measured in culture medium collected post-exposure to assess effects on Sertoli cell function.Results: Sertoli cell (SOX9+ve) number was maintained in cisplatin-exposed human fetal testicular tissues (7,647 ± 459 vs. 7,767 ± 498 cells/mm2; p > 0.05) at 240 h post-exposure. No effect on inhibin B (indicator of Sertoli cell function) production was observed at 96 h after cisplatin (0.5 and 1.0 μg/ml) exposure compared to control (21 ± 5 (0.5 μg/ml cisplatin) vs. 23 ± 7 (1.0 μg/ml cisplatin) vs. 25 ± 7 (control) ng/ml, p > 0.05). Xenografting of cisplatin-exposed (0.5 μg/ml) human fetal testicular tissues had no long-term effect on Sertoli cell number or function (percentage seminiferous area stained for SOX9 and AMH, respectively), compared with non-exposed tissues. Sertoli cell number was maintained in human pre-pubertal testicular tissues following exposure to either 0.5 μg/ml cisplatin (6,723 ± 1,647 cells/mm2) or 5 μg/ml carboplatin (7,502 ± 627 cells/mm2) compared to control (6,592 ± 1,545 cells/mm2).Conclusions: This study demonstrates maintenance of Sertoli cell number and function in immature human testicular tissues exposed to platinum-based chemotherapeutic agents. The maintenance of a functional Sertoli cell environment following chemotherapy exposure suggests that fertility restoration by spermatogonial stem cell (SSC) transplant may be possible in boys facing platinum-based cancer treatment.
Study question Does exposure to either cisplatin or carboplatin have a damaging effect on the Sertoli cell population in the immature human testicular tissues? Summary answer Exposure to cisplatin or carboplatin did not appear to have a major effect on Sertoli cell number or function in the immature human testicular tissues What is known already Long-term survival rates for children with cancer are more than 80%. However, childhood cancer treatment may result in subsequent infertility. Cisplatin is one of the most commonly used drugs for childhood cancers. Carboplatin, a second generation platinum drug, is administered at 10-times the dose of cisplatin and is believed to be less gonadotoxic. In our recent publication we have shown that exposure to both cisplatin and carboplatin acutely reduce the germ cell number in immature human testicular tissues. However, it is not known how cisplatin and carboplatin affect Sertoli cell number and function. Study design, size, duration In-vitro culture of human fetal and pre-pubertal testicular tissues was utilised. Tissue pieces were cultured for 1-3 days prior to exposure to clinically-relevant doses of chemotherapeutics or vehicle control for 24hrs in two sets of experiments: 1) 0.5 or 1 μg/ml cisplatin and culture ended at 24 and 96hrs post-exposure (fetal only); 2) 0.5 μg/ml cisplatin or 5 μg/ml carboplatin until 72 (both fetal and pre-pubertal) and 240hrs post-exposure (fetal only). Participants/materials, setting, methods Testicular tissue fragments from second trimester human fetal (14-22 gestational weeks; n = 3-6) or pre-pubertal patients (1-8years old; n = 5) were cultured in a ‘hanging drop’ system.Quantification of Sertoli cell number (cells per cord/tubular area (mm2)) was performed on sections stained for expression of SOX9. Culture medium was collected to measure levels (ng/ml) of Anti-Mullerian hormone (AMH) and Inhibin B using ELISA. Statistical analysis was performed using two-way ANOVA to account for inter-individual variation between fetuses/patients. Main results and the role of chance Quantification of positively stained Sertoli cells showed that exposure to both doses of cisplatin had no effect on Sertoli cell number at 24 and 96hrs post-exposure. No changes in AMH and inhibin B levels were observed at these time-points. Comparison between cisplatin- or carboplatin-exposed human fetal testicular tissues showed no difference in Sertoli cell numbers at either 72hrs or 240hrs post-exposure. No difference in Sertoli cell number was observed in pre-pubertal testicular tissues exposed to either cisplatin or carboplatin at 72hrs post-exposure. Limitations, reasons for caution Human fetal and pre-pubertal testis tissue is of limited availability, thus, sample sizes used in this study were relatively low. ‘Hanging drop’ culture might not recapitulate all in-vivo aspects of immature testis microenvironment. Wider implications of the findings Exposure to cisplatin or carboplatin did not affect Sertoli cell number in the immature human testicular tissues. Taken together with our recent publication, this suggests that these two platinum-based chemotherapeutic agents cause direct damage to germ cells. Functionality of Sertoli cells in chemotherapy-exposed tissues need to be further investigated. Trial registration number not applicable
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.