Prior research has shown that the ratio between resting-state theta (4–7 Hz)-beta (13–30 Hz) oscillations in the electroencephalogram (EEG) is associated with reward- and punishment-related feedback learning and risky decision making. However, it remains unclear whether the theta/beta EEG ratio is also an electrophysiological index for poorer behavioral adaptation when reward and punishment contingencies change over time. The aim of the present study was to investigate whether resting-state theta (4–7 Hz)-beta (13–30 Hz) EEG ratio correlated with reversal learning. A 4-min resting-state EEG was recorded and a gambling task with changing reward-punishment contingencies was administered in 128 healthy volunteers. Results showed an inverse relationship between theta/beta EEG ratio and reversal learning. Our findings replicate and extend previous findings by showing that higher midfrontal theta/beta EEG ratios are associated with poorer reversal learning and behavioral adaptive responses under changing environmental demands.
Predicting what will happen in the future in terms of potential reward is essential in daily life. The aim of the current study was to investigate the neurotransmitter systems involved in the anticipation of reward value and probability. We hypothesized that dopaminergic and noradrenergic antagonism would affect anticipation of reward value and probability, respectively. Twenty-three healthy participants were included in a haloperidol (2 mg) × clonidine (0.150 mg) × placebo cross-over design and subjected to a Go/NoGo experimental task during which cues signaled the probability of subsequent target appearance. Reward value (amount of money that could be won for correct and fast responding to the target) as well as probability of target appearance was orthogonally manipulated across four task blocks. Cue-elicited EEG event-related potentials were recorded to assess anticipation of value and probability, respectively. The processing of reward value was affected by dopaminergic antagonism (haloperidol), as evidenced by reduction of the reward-related positivity and P300 to reward cues. This reduction was specifically significant for subjects with high baseline dopamine levels for the P300 and most pronounced for these subjects for the reward-related positivity. In contrast, the processing of reward probability was affected by noradrenergic antagonism (clonidine). In addition, both drugs reduced overall performance (omission rate, response speed variability). We conclude that at least anticipation of reward value and probability, respectively, is specifically affected by dopaminergic versus noradrenergic antagonism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.