Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04–1×10−17). Except for total HDL particles (r = −0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07–0.17, P = 5×10−5–1×10−19). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE±0.22 mg/dl/allele, P = 8×10−5, P interaction = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE±0.22 mg/dl/allele, P = 0.35) or metformin (β = −0.03, SEE±0.22 mg/dl/allele, P = 0.90; P interaction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE±0.012 ln nmol/L/allele, P = 0.01, P interaction = 0.01) but not in the placebo (β = −0.002, SEE±0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE±0.008 nmol/L/allele, P = 0.12; P interaction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.
A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances. The Diabetes Prevention ProgramBaseline characteristics of the randomized cohort O R I G I N A L A R T I C L EOBJECTIVE -The Diabetes Prevention Program (DPP) is a 27-center randomized clinical trial designed to evaluate the safety and efficacy of interventions that may delay or prevent development of diabetes in people at increased risk for type 2 diabetes.RESEARCH DESIGN AND METHODS -Eligibility requirements were age Ն25 years, BMI Ն24 kg/m 2 (Ն22 kg/m 2 for Asian-Americans), and impaired glucose tolerance plus a fasting plasma glucose of 5.3-6.9 mmol/l (or Յ6.9 mmol for American Indians). Randomization of participants into the DPP over 2.7 years ended in June 1999. Baseline data for the three treatment groups-intensive lifestyle modification, standard care plus metformin, and standard care plus placebo-are presented for the 3,234 participants who have been randomized.RESULTS -Of all participants, 55% were Caucasian, 20% were African-American, 16% were Hispanic, 5% were American Indian, and 4% were Asian-American. Their average age at entry was 51 ± 10.7 years (mean ± SD), and 67.7% were women. Moreover, 16% were Ͻ40 years of age, and 20% were Ն60 years of age. Of the women, 48% were postmenopausal. Men and women had similar frequencies of history of hypercholesterolemia (37 and 33%, respectively) or hypertension (29 and 26%, respectively). On the basis of fasting lipid determinations, 54% of men and 40% of women fit National Cholesterol Education Program criteria for abnormal lipid profiles. More men than women were current or former cigarette smokers or had a history of coronary heart disease. Furthermore, 66% of men and 71% of women had a firstdegree relative with diabetes. Overall, BMI averaged 34.0 ± 6.7 kg/m 2 at baseline with 57% of the men and 73% of women having a BMI Ն30 kg/m 2 . Average fasting plasma glucose (6.0 ± 0.5 mmol/l) and HbA 1c (5.9 ± 0.5%) in men were comparable with values in women (5.9 ± 0.4 mmol/l and 5.9 ± 0.5%, respectively).CONCLUSIONS -The DPP has successfully randomized a large cohort of participants with a wide distribution of age, obesity, and ethnic and racial backgrounds who are at high risk for developing type 2 diabetes. The study will examine the effects of interventions on the development of diabetes.
Across the Diabetes Prevention Program (DPP) follow-up, cumulative diabetes incidence remained lower in the lifestyle compared with the placebo and metformin randomized groups and could not be explained by weight. Collection of self-reported physical activity (PA) (yearly) with cross-sectional objective PA (in follow-up) allowed for examination of PA and its long-term impact on diabetes prevention. RESEARCH DESIGN AND METHODS Yearly self-reported PA and diabetes assessment and oral glucose tolerance test results (fasting glucose semiannually) were collected for 3,232 participants with one accelerometry assessment 11-13 years after randomization (n 5 1,793). Mixed models determined PA differences across treatment groups. The association between PA and diabetes incidence was examined using Cox proportional hazards models. RESULTS There was a 6% decrease (Cox proportional hazard ratio 0.94 [95% CI 0.92, 0.96]; P < 0.001) in diabetes incidence per 6 MET-h/week increase in time-dependent PA for the entire cohort over an average of 12 years (controlled for age, sex, baseline PA, and weight). The effect of PA was greater (12% decrease) among participants less active at baseline (<7.5 MET-h/week) (n 5 1,338) (0.88 [0.83, 0.93]; P < 0.0001), with stronger findings for lifestyle participants. Lifestyle had higher cumulative PA compared with metformin or placebo (P < 0.0001) and higher accelerometry total minutes per day measured during follow-up (P 5 0.001 and 0.047). All associations remained significant with the addition of weight in the models. CONCLUSIONS PA was inversely related to incident diabetes in the entire cohort across the study, with cross-sectional accelerometry results supporting these findings. This highlights the importance of PA within lifestyle intervention efforts designed to prevent diabetes and urges health care providers to consider both PA and weight when counseling high-risk patients.
ImportanceAge-related macular degeneration (AMD) is a leading cause of blindness with no treatment available for early stages. Retrospective studies have shown an association between metformin and reduced risk of AMD.ObjectiveTo investigate the association between metformin use and age-related macular degeneration (AMD).Design, Setting, and ParticipantsThe Diabetes Prevention Program Outcomes Study is a cross-sectional follow-up phase of a large multicenter randomized clinical trial, Diabetes Prevention Program (1996-2001), to investigate the association of treatment with metformin or an intensive lifestyle modification vs placebo with preventing the onset of type 2 diabetes in a population at high risk for developing diabetes. Participants with retinal imaging at a follow-up visit 16 years posttrial (2017-2019) were included. Analysis took place between October 2019 and May 2022.InterventionsParticipants were randomly distributed between 3 interventional arms: lifestyle, metformin, and placebo.Main Outcomes and MeasuresPrevalence of AMD in the treatment arms.ResultsOf 1592 participants, 514 (32.3%) were in the lifestyle arm, 549 (34.5%) were in the metformin arm, and 529 (33.2%) were in the placebo arm. All 3 arms were balanced for baseline characteristics including age (mean [SD] age at randomization, 49 [9] years), sex (1128 [71%] male), race and ethnicity (784 [49%] White), smoking habits, body mass index, and education level. AMD was identified in 479 participants (30.1%); 229 (14.4%) had early AMD, 218 (13.7%) had intermediate AMD, and 32 (2.0%) had advanced AMD. There was no significant difference in the presence of AMD between the 3 groups: 152 (29.6%) in the lifestyle arm, 165 (30.2%) in the metformin arm, and 162 (30.7%) in the placebo arm. There was also no difference in the distribution of early, intermediate, and advanced AMD between the intervention groups. Mean duration of metformin use was similar for those with and without AMD (mean [SD], 8.0 [9.3] vs 8.5 [9.3] years; P = .69). In the multivariate models, history of smoking was associated with increased risks of AMD (odds ratio, 1.30; 95% CI, 1.05-1.61; P = .02).Conclusions and RelevanceThese data suggest neither metformin nor lifestyle changes initiated for diabetes prevention were associated with the risk of any AMD, with similar results for AMD severity. Duration of metformin use was also not associated with AMD. This analysis does not address the association of metformin with incidence or progression of AMD.
Background The 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) 3rd expert report highlights up-to-date Cancer Prevention Recommendations that may reduce burdens of many chronic diseases, including diabetes. This study examined if following a lifestyle that aligns with the recommendations – assessed via the 2018 WCRF/AICR Score – was associated with lower risk of type 2 diabetes in high-risk adults participating in the Diabetes Prevention Program Outcomes Study (DPPOS). Methods The Diabetes Prevention Program (DPP) randomized adults at high risk for diabetes to receive a lifestyle intervention (ILS), metformin (MET) or a placebo (PLB) (mean: 3.2 years), with additional follow-up in DPPOS for 11 years (mean: 15 years total). 2018 WCRF/AICR Scores included seven components: body weight, physical activity, plant-based foods, fast foods, red and processed meat, sugar-sweetened beverages, and alcohol; the optional breastfeeding component was excluded. Scores ranged 0-7 points (with greater scores indicating greater alignment with the recommendations) and were estimated at years 0, 1, 5, 6, 9, and 15 (N=3,147). Fasting glucose and HbA1c were measured every six months and oral glucose tolerance tests were performed annually. Adjusted Cox proportional hazard ratios (HRs) and 95% confidence intervals (CIs) were used to examine the association of both Score changes from years 0-1 and time-dependent Score changes on diabetes risk through DPP and year 15. Results Scores improved within all groups over 15 years (p<0.001); ILS Scores improved more than MET or PLB Scores after 1 year (p<0.001). For every 1-unit improvement from years 0-1, there was a 31% and 15% lower diabetes risk in ILS (95% CI: 0.56-0.84) and PLB (95% CI: 0.72-0.97) through DPP, and no significant association in MET. Associations were greatest among American Indian participants, followed by non-Hispanic White and Hispanic participants. Score changes from years 0-1 and time-dependent Score changes in ILS and PLB remained associated with lower risk through year 15. Conclusions Score improvements were associated with long-term, lower diabetes risk among high-risk adults randomized to ILS and PLB, but not MET. Future research should explore impact of the Score on cancer risk. Trial registration Diabetes Prevention Program: NCT00004992; Diabetes Prevention Program Outcomes Study: NCT00038727
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.