Key Points• Germline GATA2 mutations account for 15% of advanced and 7% of all primary pediatric MDS and do not influence overall survival. • The majority (72%) of adolescents with MDS and monosomy 7 carry an underlying GATA2 deficiency.Germline GATA2 mutations cause cellular deficiencies with high propensity for myeloid disease. We investigated 426 children and adolescents with primary myelodysplastic syndrome (MDS) and 82 cases with secondary MDS enrolled in 2 consecutive prospective studies of the European Working Group of MDS in Childhood (EWOG-MDS) conducted in Germany over a period of 15 years. Germline GATA2 mutations accounted for 15% of advanced and 7% of all primary MDS cases, but were absent in children with MDS secondary to therapy or acquired aplastic anemia. Mutation carriers were older at diagnosis and more likely to present with monosomy 7 and advanced disease compared with wild-type cases. For stratified analysis according to karyotype, 108 additional primary MDS patients registered with EWOG-MDS were studied. Overall, we identified 57 MDS patients with germline GATA2 mutations. GATA2 mutations were highly prevalent among patients with monosomy 7 (37%, all ages) reaching its peak in adolescence (72% of adolescents with monosomy 7). Unexpectedly, monocytosis was more frequent in GATA2-mutated patients. However, when adjusted for the selection bias from monosomy 7, mutational status had no effect on the hematologic phenotype. Finally, overall survival and outcome of hematopoietic stem cell transplantation (HSCT) were not influenced by mutational status. This study identifies GATA2 mutations as the most common germline defect predisposing to pediatric MDS with a very high prevalence in adolescents with monosomy 7. GATA2 mutations do not confer poor prognosis in childhood MDS. However, the high risk for progression to advanced disease must guide decision-making toward timely
Myelodysplastic and myeloproliferative disorders are rare in childhood and there is no widely accepted system for their diagnosis and classification. We propose minimal diagnostic criteria and a simple classification scheme which, while based on accepted morphological features and conforming with the recent suggestions of the WHO, allows for the special problems of myelodysplastic diseases in children. The classification recognizes three major diagnostic groups: (1) juvenile myelomonocytic leukemia (JMML), previously named chronic myelomonocytic leukemia (CMML) or juvenile chronic myeloid leukemia (JCML); (2) myeloid leukemia of Down syndrome, a disease with distinct clinical and biological features, encompassing both MDS and AML occurring in Down syndrome; and (3) MDS occurring both de novo and as a complication of previous therapy or pre-existing bone marrow disorder (secondary MDS). The main subtypes of MDS are refractory cytopenia (RC) and refractory anemia with excess of blasts (RAEB). It is suggested retaining the subtype of RAEB-T with 20-30% blasts in the marrow until more data are available. Cytogenetics and serial assessments of the patients are essential adjuncts to morphology both in diagnosis and classification.
The classification of myelodysplastic syndromes is based on the morphological criteria proposed by the French-American-British (FAB) and World Health Organization (WHO) groups. Accurate enumeration of blast cells, although essential for diagnosis of myelodysplastic syndrome and for assignment to prognostic groups, is often difficult, due to imprecise criteria for the morphological definition of blasts and promyelocytes. An International Working Group on Morphology of Myelodysplastic Syndrome (IWGM-MDS) of hematopathologists and hematologists expert in the field of myelodysplastic syndrome reviewed the morphological features of bone marrows from all subtypes of myelodysplastic syndrome and agreed on a set of recommendations, including recommendations for the definition and enumeration of blast cells and ring sideroblasts. It is recommended that (1) agranular or granular blast cells be defined (replacing the previous type I, II and III blasts), (2) dysplastic promyelocytes be distinguished from cytologically normal promyelocytes and from granular blast cells, (3) sufficient cells be counted to give a precise blast percentage, particularly at thresholds that are important for diagnosis or prognosis and (4) ring sideroblasts be defined as erythroblasts in which there are a minimum of 5 siderotic granules covering at least a third of the nuclear circumference. Clear definitions and a differential count of a sufficient number of cells is likely to improve precision in the diagnosis and classification of myelodysplastic syndrome. Recommendations should be applied in the context of the WHO classification.
Familial myelodysplastic syndromes arise from haploinsufficiency of genes involved in hematopoiesis and are primarily associated with early-onset disease. Here we describe a familial syndrome in seven patients from four unrelated pedigrees presenting with myelodysplastic syndrome and loss of chromosome 7/7q. Their median age at diagnosis was 2.1 years (range, 1–42). All patients presented with thrombocytopenia with or without additional cytopenias and a hypocellular marrow without an increase of blasts. Genomic studies identified constitutional mutations (p.H880Q, p.R986H, p.R986C and p.V1512M) in the SAMD9L gene on 7q21, with decreased allele frequency in hematopoiesis. The non-random loss of mutated SAMD9L alleles was attained via monosomy 7, deletion 7q, UPD7q, or acquired truncating SAMD9L variants p.R1188X and p.S1317RfsX21. Incomplete penetrance was noted in 30% (3/10) of mutation carriers. Long-term observation revealed divergent outcomes with either progression to leukemia and/or accumulation of driver mutations (n=2), persistent monosomy 7 (n=4), and transient monosomy 7 followed by spontaneous recovery with SAMD9L-wildtype UPD7q (n=2). Dysmorphic features or neurological symptoms were absent in our patients, pointing to the notion that myelodysplasia with monosomy 7 can be a sole manifestation of SAMD9L disease. Collectively, our results define a new subtype of familial myelodysplastic syndrome and provide an explanation for the phenomenon of transient monosomy 7. Registered at: www.clinicaltrials.gov; #NCT00047268.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.