The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite. ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|
UNITE (https://unite.ut.ee/) is a web-based database and sequence management environment for the molecular identification of fungi. It targets the formal fungal barcode—the nuclear ribosomal internal transcribed spacer (ITS) region—and offers all ∼1 000 000 public fungal ITS sequences for reference. These are clustered into ∼459 000 species hypotheses and assigned digital object identifiers (DOIs) to promote unambiguous reference across studies. In-house and web-based third-party sequence curation and annotation have resulted in more than 275 000 improvements to the data over the past 15 years. UNITE serves as a data provider for a range of metabarcoding software pipelines and regularly exchanges data with all major fungal sequence databases and other community resources. Recent improvements include redesigned handling of unclassifiable species hypotheses, integration with the taxonomic backbone of the Global Biodiversity Information Facility, and support for an unlimited number of parallel taxonomic classification systems.
Summary• Compared with Sanger sequencing-based methods, pyrosequencing provides orders of magnitude more data on the diversity of organisms in their natural habitat, but its technological biases and relative accuracy remain poorly understood.• This study compares the performance of pyrosequencing and traditional sequencing for species' recovery of ectomycorrhizal fungi on root tips in a Cameroonian rain forest and addresses biases related to multi-template PCR and pyrosequencing analyses.• Pyrosequencing and the traditional method yielded qualitatively similar results, but there were slight, but significant, differences that affected the taxonomic view of the fungal community. We found that most pyrosequencing singletons were artifactual and contained a strongly elevated proportion of insertions compared with natural intra-and interspecific variation. The alternative primers, DNA extraction methods and PCR replicates strongly influenced the richness and community composition as recovered by pyrosequencing.• Pyrosequencing offers a powerful alternative for the identification of ectomycorrhizal fungi in pooled root samples, but requires careful selection of molecular tools. A well-populated backbone database facilitates the detection of biological and technical artifacts. The pyrosequencing pipeline is available at
Summary• Ectomycorrhizal (ECM) symbiosis is a widespread plant nutrition strategy in Australia, especially in semiarid regions. This study aims to determine the diversity, community structure and host preference of ECM fungi in a Tasmanian wet sclerophyll forest.• Ectomycorrhizal fungi were identified based on anatomotyping and rDNA internal transcribed spacer (ITS)-large subunit (LSU) sequence analysis using taxon-specific primers. Host tree roots were identified based on root morphology and length differences of the chloroplast trnL region.• A total of 123 species of ECM fungi were recovered from root tips of Eucalyptus regnans (Myrtaceae), Pomaderris apetala (Rhamnaceae) and Nothofagus cunninghamii (Nothofagaceae). The frequency of two thirds of the most common ECM fungi from several lineages was significantly influenced by host species. The lineages of Cortinarius, Tomentella-Thelephora, Russula-Lactarius, Clavulina, Descolea and Laccaria prevailed in the total community and their species richness and relative abundance did not differ by host species.• This study demonstrates that strongly host-preferring, though not directly specific, ECM fungi may dominate the below-ground community. Apart from the richness of Descolea, Tulasnella and Helotiales and the lack of Suillus-Rhizopogon and Amphinema-Tylospora, the ECM fungal diversity and phylogenetic community structure is similar to that in the Holarctic realm.
DNA sequences accumulating in the International Nucleotide Sequence Databases (INSD) form a rich source of information for taxonomic and ecological meta-analyses. However, these databases include many erroneous entries, and the data itself is poorly annotated with metadata, making it difficult to target and extract entries of interest with any degree of precision. Here we describe the web-based workbench PlutoF, which is designed to bridge the gap between the needs of contemporary research in biology and the existing software resources and databases. Built on a relational database, PlutoF allows remote-access rapid submission, retrieval, and analysis of study, specimen, and sequence data in INSD as well as for private datasets though web-based thin clients. In contrast to INSD, PlutoF supports internationally standardized terminology to allow very specific annotation and linking of interacting specimens and species. The sequence analysis module is optimized for identification and analysis of environmental ITS sequences of fungi, but it can be modified to operate on any genetic marker and group of organisms. The workbench is available at http://plutof.ut.ee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.