Seiring berkembangnya jaman perkembangan malware android terus mengalami peningkatan setiap tahunnya.Machine Learning adalah salah satu teknik yang bisa kita gunakan dalam melakukan analisa malware android dengan 2 model pendekatan statis dan dinamis.Penulis menggunakan Support Vector Machine(SVM) untuk proses klasifikasiannya dan menggunakan kernel RBF. Fitur yang digunakan dalam penelitian ini adalah Permission dan Broadcast Receiver. Untuk menambah hasil akurasinya digunakan metode Seleksi Fitur Relieff. Dan Seleksi Fitur pembandingnya adalah Chi-Square(CHI),Correlation-based Feature Selection(CFS), dan Gain Ratio(GR). Hasil dari Seleksi Fitur Relieff akan di evaluasi dengan Seleksi Fitur pembandingnya serta juga dengan hasil klasifikasi tanpa menggunakan Seleksi Fitur. Akurasi klasifikasi Seleksi Fitur Relieff menghasilkan 33.33333%, hasil akurasi Seleksi Fitur pembanding lainnya juga memberikan hasil sama dengan Seleksi Fitur Relieff. Sedangkan hasil klasifikasi tanpa Seleksi Fitur memberikan hasil yang cukup tinggi yaitu 95%. Hasil pengujian menunjukkan bahwa Seleksi Fitur tidak cocok digunakan dengan data yang sedikit karna memberikan hasil yang jauh lebih rendah dari tanpa menggunakan Seleksi Fitur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.