A mainstay of the antiretroviral drugs used for therapy of HIV-1, zidovudine (AZT) is genotoxic and becomes incorporated into DNA. Here we explored host inter-individual variability in AZT-DNA incorporation, by AZT radioimmunoassay (RIA), using 19 different strains of normal human mammary epithelial cells (NHMECs) exposed for 24 h to 200 microM AZT. Twelve of the 19 NHMEC strains showed detectable AZT-DNA incorporation levels (16 to 259 molecules of AZT/10(6) nucleotides), while 7 NHMEC strains did not show detectable AZT-DNA incorporation. In order to explore the basis for this variability, we compared the 2 NHMEC strains that showed the highest levels of AZT-DNA incorporation (H1 and H2) with 2 strains showing no detectable AZT-DNA incorporation (L1 and L2). All 4 strains had similar (> or =80%) cell survival, low levels of accumulation of cells in S-phase, and no relevant differences in response to the direct-acting mutagen bleomycin (BLM). Finally, when levels of thymidine kinase 1 (TK1), the first enzyme in the pathway for incorporation of AZT into DNA, were determined by Western blot analysis in all 19 NHMEC strains at 24 h of AZT exposure, higher TK1 protein levels were found in the 12 strains showing AZT-DNA incorporation, compared to the 7 showing no incorporation (p=0.0005, Mann-Whitney test). Furthermore, strains L1 and L2, which did not show AZT-DNA incorporation at 24 h, did have measurable incorporation by 48 and 72 h. These data suggest that variability in AZT-DNA incorporation may be modulated by inter-individual differences in the rate of induction of TK1 in response to AZT exposure.
The antiretroviral efficacy of 3′-azido-3′-deoxythymidine (AZT) is dependent upon intracellular mono-, di-, and triphosphorylation and incorporation into DNA in place of thymidine. Thymidine kinase 1 (TK-1) catalyzes the first step of this pathway. MOLT-3, human lymphoblastoid cells, were exposed to AZT continuously for 14 passages (P1–P14) and cultured for an additional 14 passages (P15–P28) without AZT. Progressive and irreversible depletion of the enzymatically active form of the TK-1 24-kDa monomer with loss of active protein was demonstrated during P1–P5 of AZT exposure. From P15 to P28, both the 24- and the 48-kDa forms of TK-1 were undetectable and a tetrameric 96-kDa form was present. AZT-DNA incorporation was observed with values of 150, 133, and 108 molecules of AZT/106 nucleotides at the 10μM plasma-equivalent AZT dose at P1, P5, and P14, respectively. An exposure-related increase in the frequency of micronuclei (MN) was observed in cells exposed to either 10 or 800μM AZT during P1–P14. Analysis of the cell cycle profile revealed an accumulation of S-phase cells and a decrease in G1-phase cells during exposure to 800μM AZT for 14 passages. When MOLT-3 cells were grown in AZT-free media (P15–P29), there was a reduction in AZT-DNA incorporation and MN formation; however, TK-1 depletion and the persistence of S-phase delay were unchanged. These data suggest that in addition to known mutagenic mechanisms, cells may become resistant to AZT partially through inactivation of TK-1 and through modulation of cell cycle components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.