Objective:The incidence of salmonellosis in humans and animals is still high due to the occurrence of virulence factors in Salmonella enterica which play a role in the process of infection in the host and the spread of disease and most of the S. enterica can infect humans and animals. The present study was aimed to identify Salmonella Enteritidis and detect virulence genes related to Salmonella pathogenicity islands (SPIs) and Salmonella plasmid virulence (Spv).Materials and Methods:A total of 27 S. Enteritidis archive isolates belonging to the National Veterinary Drug Assay Laboratory (NVDAL) were used in this study. The bacteria were collected in 2016 and 2017 from samples of the cloaca and fecal swabs from layer and broiler farms in five provinces of Java Island. Isolates were cultured in specific media, biochemical tests and Gram staining. Detection of S. Enteritidis and virulence genes was done by polymerase chain reaction (PCR) method.Results:Identification of serovar showed 100% (27/27) isolates were positive for the sdfI gene (304 bp). The result confirmed that all strains were S. Enteritidis. PCR based detection of virulence genes showed that 100% of isolates had virulence genes in SPI-1 to SPI-5, namely, invA, ssaQ, mgtC, spi4D, and pipA genes. All the isolates (27/27) were also positive to spvB gene-based PCR.Conclusion:All the isolates of S. Enteritidis in this study carry virulence genes related to SPI-1 to SPI-5 and plasmid virulence. The existence of virulent genes indicates that the S. Enteritidis strain examined in this study is highly virulent and poses a potential threat of worse disease outcome in humans and animals.
Background and Aim: Pathogenic Escherichia coli contamination along the broiler meat supply chain is a serious public health concern. This bacterial infection with multidrug-resistant can lead to treatment failure. Several studies have revealed that avian pathogenic E. coli (APEC) and human extraintestinal pathogenic E. coli (ExPEC) showed a close genetic relationship and may share virulence genes. This study aimed to determine the phylogenetic group and virulence gene profiles in colistin-resistant E. coli obtained from the broiler meat supply chain in Bogor, West Java, Indonesia. Materials and Methods: Fifty-eight archive isolates originated from the cloacal swab, litter, drinking water, inside plucker swab, fresh meat at small scale poultry slaughterhouses, and traditional markets were used in this study. All the isolates were characterized by a polymerase chain reaction to determine the phylogenetic group (A, B1, B2, or D) and virulence gene profiles with APEC marker genes (iutA, hlyF, iss, iroN, and ompT). Results: Phylogenetic grouping revealed that the isolates belong to A group (34.48%), D group (34.48%), B1 group (17.24%), and B2 group (13.79%). The virulence gene prevalence was as follows: iutA (36%), hlyF (21%), ompT (21%), iroN (10%), and iss (9%). The B2 group presented with more virulence genes combinations. iroN, hlyF, and ompT genes were positively associated with the B2 group (p≤0.05). Conclusion: Our results highlight the role of colistin-resistant E. coli originated from the broiler meat supply chain as a potential reservoir for human ExPEC virulence genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.