Basic helix-loop-helix proteins (bHLHs) are found throughout the three eukaryotic kingdoms and constitute one of the largest families of transcription factors. A growing number of bHLH proteins have been functionally characterized in plants. However, some of these have not been previously classified. We present here an updated and comprehensive classification of the bHLHs encoded by the whole sequenced genomes of Arabidopsis (Arabidopsis thaliana), Populus trichocarpa, Oryza sativa, Physcomitrella patens, and five algae species. We define a plant bHLH consensus motif, which allowed the identification of novel highly diverged atypical bHLHs. Using yeast two-hybrid assays, we confirm that (1) a highly diverged bHLH has retained protein interaction activity and (2) the two most conserved positions in the consensus play an essential role in dimerization. Phylogenetic analysis permitted classification of the 638 bHLH genes identified into 32 subfamilies. Evolutionary and functional relationships within subfamilies are supported by intron patterns, predicted DNA-binding motifs, and the architecture of conserved protein motifs. Our analyses reveal the origin and evolutionary diversification of plant bHLHs through differential expansions, domain shuffling, and extensive sequence divergence. At the functional level, this would translate into different subfamilies evolving specific DNA-binding and protein interaction activities as well as differential transcriptional regulatory roles. Our results suggest a role for bHLH proteins in generating plant phenotypic diversity and provide a solid framework for further investigations into the role carried out in the transcriptional regulation of key growth and developmental processes.
Plants sense the presence of potentially competing nearby individuals as a reduction in the red to far-red ratio of the incoming light. In anticipation of eventual shading, a set of plant responses known as the shade avoidance syndrome (SAS) is initiated soon after detection of this signal by the phytochrome photoreceptors. Here we analyze the function of PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2, two Arabidopsis thaliana genes rapidly upregulated after simulated shade perception. These genes encode two closely related atypical basic helix-loophelix proteins with no previously assigned function in plant development. Using reverse genetic approaches, we show that PAR1 and PAR2 act in the nucleus to broadly control plant development, acting as negative regulators of a variety of SAS responses, including seedling elongation and photosynthetic pigment accumulation. Molecularly, PAR1 and PAR2 act as direct transcriptional repressors of two auxin-responsive genes, SMALL AUXIN UPREGULATED15 (SAUR15) and SAUR68. Additional results support that PAR1 and PAR2 function in integrating shade and hormone transcriptional networks, rapidly connecting phytochrome-sensed light changes with auxin responsiveness.
The phytochrome (phy) photoreceptors modulate plant development after perception of light. Upon illumination of etiolated seedlings, phys initiate a transcriptional cascade by directly transducing light signals to the promoters of genes encoding regulators of morphogenesis. In light-grown plants, however, little is known about the transcriptional cascade modulated by phys in response to changes in light. The phy entry points in this cascade are completely unknown. We are particularly interested in the shade avoidance syndrome (SAS). Here we describe a subset of six genes whose expression is rapidly modulated by phys during both deetiolation and SAS in Arabidopsis (Arabidopsis thaliana). Using cycloheximide, we provide evidence that four of these phy rapidly regulated (PAR) genes are direct targets of phy signaling during SAS, revealing these genes as upstream components of the transcriptional cascade. Promoter-b-glucuronidase fusions confirmed that PAR genes are photoregulated at the transcriptional level. Analysis of gene expression in light signal transduction mutants showed that COP1 and DET1 (but not DET2 or HY5) play a role in modulating PAR expression in response to shade in light-grown seedlings. Moreover, genetic analyses showed that one of the genes identified as a direct target of phy signaling was phy-interacting factor 3-like-1 (PIL1). PIL1 has previously been implicated in SAS in response to transient shade, but we show here that it also plays a key role in response to long-term shade. The action of PIL1 was particularly apparent in a phyB background, suggesting an important negative role for PIL1 under dense vegetation canopies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.