Smad4͞DPC4 (deleted in pancreatic carcinoma, locus 4) is a tumor suppressor gene lost at high frequency in cancers of the pancreas and other gastrointestinal organs. Smad4 encodes a key intracellular messenger in the transforming growth factor  (TGF-) signaling cascade. TGF- is a potent inhibitor of the growth of epithelial cells; thus, it has been assumed that loss of Smad4 during tumor progression relieves this inhibition. Herein, we show that restoration of Smad4 to human pancreatic carcinoma cells suppressed tumor formation in vivo, yet it did not restore sensitivity to TGF-. Rather, Smad4 restoration influenced angiogenesis, decreasing expression of vascular endothelial growth factor and increasing expression of thrombospondin-1. In contrast to the parental cell line and to control transfectants that produced rapidly growing tumors in vivo, Smad4 revertants induced small nonprogressive tumors with reduced vascular density. These data define the control of an angiogenic switch as an alternative, previously unknown mechanism of tumor suppression for Smad4 and identify the angiogenic mediators vascular endothelial growth factor and thrombospondin-1 as key target genes.
The presumed precursor lesions of pancreatic ductal adenocarcinoma were recently classified according to their increasing grade of dysplasia and were designated as pancreatic intraepithelial neoplasia (PanIN) 1 through 3. In this study, we tested whether molecular genetic alterations can be correlated with this classification and may help to further categorize the various PanIN grades. We determined the frequencies of allelic loss at chromosomal arms 9p, 17p, and 18q in 81 microdissected duct lesions of various PanIN grades, using a combination of whole genome amplification and microsatellite analysis. In addition we examined the p53 and Dpc4 protein expression patterns by immunohistochemical analysis. In PanIN-1, we did not detect allelic losses. In PanIN-2, allelic losses were found in increasing frequency, and were particularly high in those lesions with moderate-grade dysplasia (low grade, 20, 33, and 17%, loss at 9p, 17p, and 18q, respectively; moderate grade, 46, 77, and 58%). PanIN-3 and invasive carcinomas exhibited abundant losses. Abnormal p53 and Dpc4 protein expression was only rarely identified in PanIN-2 lesions, but occurred frequently in PanIN-3 lesions and invasive carcinomas. The combined genetic and protein expression data support a model in which allelic loss is the first hit in the biallelic inactivation of the p53 and DPC4 tumor suppressor genes. In addition, our data indicate that allelic loss analysis may be useful in separating PanIN-2 lesions with low-grade dysplasia from those PanIN-2 lesions with moderate-grade dysplasia, each potentially representing a distinct progression step toward invasive carcinoma.
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in different biological processes by suppressing target gene expression. Altered expression of miR-30a-5p has been reported in colon carcinoma. To elucidate its potential biological role in colon cancer, miR-30a-5p was overexpressed via a lentiviral vector system in two different colon cancer cell lines. This induced in both lines miR-30a-5p-mediated growth inhibition, attributable to a cell cycle arrest at the G(1) phase and an induction of apoptosis. Combining global gene expression analyses of miR-30a-5p transgenic line HCT116 with in silico miRNA target prediction, we identified the denticleless protein homolog (DTL) as a potential miRNA-30a-5p target. Subsequent reporter gene assays confirmed the predicted miR-30a-5p binding site in the 3'untranslated region of DTL. Importantly, overexpression of DTL in HCT116 cells partially rescued these cells from miR-30a-5p-mediated growth suppression. In addition, TP53 and CDKN1A expression were increased in miR-30a-5p-overexpressing HCT116 cells, suggesting that miR-30a-5p is able to modulate the cell cycle via a DTL-TP53-CDKN1A regulatory circuit. Finally, 379 colorectal cancer tissues were screened for DTL expression and DTL was found to be overexpressed in 95.8% of human colorectal cancers compared with normal colon mucosa. In conclusion, our data identified miR-30a-5p as a tumor-suppressing miRNA in colon cancer cells exerting its function via modulation of DTL expression, which is frequently overexpressed in colorectal cancer. Thus, our data suggest that restoring miR-30a-5p function may prove useful as therapeutic strategy for tumors with reduced miR-30a-5p expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.