The use of fertilizers and chemical pesticides promotes significant improvements in crop development, but some problems and risks associated with them limit their application. An alternative is using biological inputs based on microorganisms, increasing production while combining efficiency and sustainability. Actinomycetes are a group of bacteria belonging to the phylum Actinobacteria, recently re-named Actinobacteriota. They represent important microbial communities in the soils with increasing agricultural applications, especially in the biological control of insect-pest and plant disease and in plant growth promotion. Studies report their promising use as microbiological inoculants by exploring mechanisms to improve plant development, such as biological nitrogen fixation, phosphate solubilization, production of phytohormones, and other biocompounds. In addition, many species produce metabolic pathways that generate high-value antibiotics, extracellular enzymes and secondary metabolites other than antimicrobials, with potential in the control of phytopathogenic fungi, insects, and nematodes. These actinomycetes could be used to formulate novel bioinoculants composed of spores and/or mycelium. Considering that the research in this field is up-and-coming, with significant economic and environmental impacts in the future, this review aims to group the most relevant works that explore the biodiversity of actinomycetes, helping to develop inoculants and biodefensives for more productive and conscious agriculture.
Here, we report the draft genomic sequences and annotation of Streptomyces misionensis ACT66 and Streptomyces albidoflavus ACT77, which are two bacteria with potential application for phytopathogen biocontrol.
Here, we report the draft genomic sequences of
Bacillus amyloliquefaciens
strain CBMAI 1301, isolated from soybean seeds, and
Bacillus subtilis
strain CBMAI 1302, isolated from soil. These strains have potential applications for the biological control of phytopathogens, and the sequencing of these two genomes could greatly benefit soybean cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.