This study is aimed at investigating the cytotoxicity, anti-inflammatory, and angiogenic activities of two Boswellia serrata extracts on primary culture of porcine aortic endothelial cells (pAECs). Chemical characterization of a dry extract (extract A) and a hydroenzymatic extract (extract G) of B. serrata was performed by HPLC using pure boswellic acids (BAs) as standard. In cultured pAECs, extract G improved cell viability, following LPS challenge, in a dose-dependent manner and did not show any toxic effect. On the other hand, extract A was toxic at higher doses and restored pAEC viability after LPS challenge only at lower doses. Pure BAs, used at the same concentrations as those determined in the phytoextracts, did not contrast LPS-induced cytotoxicity. Extract A showed proangiogenic properties at the lowest dose, and the same result was observed using pure AKBA at the corresponding concentration, whereas extract G did not show any effect on the migration capacity of endothelial cells. In conclusion, an anti-inflammatory activity of B. serrata extracts on endothelial cells was reported, though cytotoxicity or proliferative stimulation can occur instead of a protective effect, depending on the dose and the formulation.
The aim of the present research was to study the effects of an ethanolic extract of Salvia sagittata Ruiz & Pav (SSEE), an endemic Ecuadorian plant traditionally used to treat inflammation and different intestinal affections, on primary cultures of porcine aortic endothelial cells (pAECs). pAECs were cultured in the presence of different concentrations (1-200 μg/mL) of SSEE for 24 h, and cytotoxicity was evaluated by the MTT assay. SSEE did not negatively affect cellular viability at any concentration tested. Cell cycle was analyzed and no significant change was observed. Then, the anti-inflammatory effects of SSEE on pAECs were analyzed using a lipopolysaccharide (LPS) as the inflammatory stimulus. Different markers involved in the inflammatory process, such as cytokines and protective molecules, were evaluated by real-time quantitative PCR and Western blot. SSEE showed the ability to restore pAEC physiological conditions reducing interleukin-6 and increasing Heme Oxygenase-1 protein levels. The phytochemical composition of SSEE was also evaluated via HPLC-DAD and spectrophotometric assays. The presence of different phenolic acids and flavonoids was revealed, with rosmarinic acid as the most abundant component. SSEE possesses an interesting antioxidant activity, as assessed through both the Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. In conclusion, results suggest that SSEE is endowed with an in vitro anti-inflammatory effect. This represents the initial step in finding a possible scientific support for the traditional therapeutic use of this plant.
BackgroundIt is widely accepted the key role of endothelium in the onset of many chronic and acute vascular and cardiovascular diseases.In the last decade, traditional compounds utilized in “folk medicine” were considered with increasing interest to discover new bioactive molecules potentially effective in a wide range of diseases including cardiovascular ones. Since ancient times different parts of the Cucumis sativus L. plant were utilized in Ayurvedic medicine, among these, fruits were traditionally used to alleviate skin problem such as sunburn irritation and inflammation. The main purpose of the present research was, in a well-defined in vitro model of endothelial cells, to investigate whether a water/ethanol extract of Cucumis sativus L. (CSE) fruit can attenuate the damaging effect of pro-inflammatory lipopolysaccharide (LPS).MethodsCell viability, gene expression of endothelial cell markers, cytokines secretion and in vitro angiogenesis assay were performed on porcine Aortic Endothelial Cells exposed to increasing doses (0.02; 02; 2 mg/ml) of CSE in the presence of pro-inflammatory lipopolysaccharide (LPS 10 μg/ml).ResultsCSE reduced LPS-induced cytotoxicity and decreased the cellular detachment, restoring the expression of tight junction ZO-1. The increase of TLR4 expression induced by LPS was counterbalanced by the presence of CSE, while the protective gene Hemeoxygenase (HO)-1 was increased. Cucumis sativus L. inhibited the early robust secretion of inflammatory IL-8 and GM-CSFs, furthermore inhibition of inflammatory IL-6 and IL-1α occurred late at 7 and 24 h respectively. On the contrary, the secretion of anti-inflammatory IL-10, together with IL-18 and IFN-γ was increased. Moreover, the in vitro angiogenesis induced by inflammatory LPS was prevented by the presence of Cucunis sativus L. extract, at any doses tested.ConclusionsOur results have clearly demonstrated that Cucumis sativus L. extract has attenuated lipopolysaccharide-induced inflammatory response in endothelial cells.
Background MSCs secretome is under investigation as an alternative to whole-cell-based therapies, since it is enriched of bioactive molecules: growth factors, cytokines and chemokines. Taking into account the translational value of the pig model, the leading aim of the present paper was to characterize the secretome of porcine Vascular Wall–Mesenchymal Stem Cells (pVW-MSCs) and its change in presence of LPS stimulation. Moreover, considering the importance of angiogenesis in regenerative mechanisms, we analysed the effect of pVW-MSCs secretome on in vitro angiogenesis. Results Our results demonstrated that conditioned medium from unstimulated pVW-MSCs contained high levels of IL-8, GM-CSF, IFN-γ and other immunomodulatory proteins: IL-6 IL-18 IL-4 IL-2 IL-10. LPS modulates pVW-MSCs gene expression and secretome composition, in particular a significant increase of IL-6 and IL-8 was observed; conversely, the amount of GM-CSF, IFN-γ, IL-2, IL-4, IL-10 and IL-18 showed a significant transient decrease with the LPS stimulation. Conditioned medium from unstimulated pVW-MSCs induced in vitro endothelial angiogenesis, which is more evident when the conditioned medium was from LPS stimulated pVW-MSCs. Conclusions The lines of evidence here presented shed a light on possible future application of secretome derived by pVW-MSCs on research studies in translational regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.